
Boris Pismenny

Netdev 1.2 

IPsec Crypto Offload To Network Devices



© 2016 Mellanox Technologies 2- Mellanox Confidential -

Abstract

 Motivation

 Model

 Challenges

• LSO

• IV processing (seqiv)

• Checksum offload

 Performance

 Status

 Limitations

 Future

 XFRM Device Ops

 Transmit and Receive Flows



© 2016 Mellanox Technologies 3- Mellanox Confidential -

Motivation

 Encryption is CPU intensive

 Crypto offload today via PCIe requires passing the PCIe thrice

 LSO and checksum offload aren’t supported for IPsec

HOST

Crypto

NIC

HOST

NIC+Crypto

NIC + Crypto Offload: Crypto Offload via PCIe:



© 2016 Mellanox Technologies 4- Mellanox Confidential -

Model

 Software Responsibilities:

• Handling packet headers

• IPsec replay protection

• IPsec policy checks

 NIC offloads crypto 

• Encrypt/Decrypt and authenticate packets as they go through the device

• Receive authentication failure packets remain unchanged

 Software fallback

• Hardware might not encrypt/decrypt some packet

• All operations performed by hardware can be performed by software



© 2016 Mellanox Technologies 5- Mellanox Confidential -

ESP Tunnel Packets

IV



© 2016 Mellanox Technologies 6- Mellanox Confidential -

Challenges: LSO

 Without hardware crypto it is impossible to use LSO for IPsec packets

 LSO requirements:

 Checksum offload

• See next slide

 Increment IPsec sequence number 

• IPsec sequence numbers need to be incremented in addition to TCP sequence numbers

 Generate the IPsec trailer for each packet

• GSO packets can’t have a trailer for each mss

 Generate the correct IV for each packet

• IV must be synced between software and hardware



© 2016 Mellanox Technologies 7- Mellanox Confidential -

ESP Tunnel Packets: LSO

IV
Generate IV

per GSO segment

Calculate checksum for 

each GSO segment

Generate ESP trailer

per GSO segment



© 2016 Mellanox Technologies 8- Mellanox Confidential -

Challenges: Checksum offload

 Without hardware crypto offload it is impossible to use checksum offload for IPsec packets.

• Checksum is computed before data encryption or after decryption

Transmit Checksum Offload:
 Problem: IPsec packets have a trailer, packets with a trailer don’t support CHECKSUM_PARTIAL. From 

include/linux/skbuff.h:

 Soltuion1: IPsec packets whose encryption is offloaded will be sent without a trailer. The trailer will be generated by 

hardware.

 Soltuion2: The driver will parse offloaded IPsec packets, calculate the length of the trailer and request hardware to 

calculate the checksum without the trailer.

Receive Checksum Offload:
 Need to add support for CHECKSUM_COMPLETE for ESP packets.



© 2016 Mellanox Technologies 9- Mellanox Confidential -

ESP Tunnel Packets: LSO

IV

The checksum is 

calculated before 

encryption

Not included in TCP 

checksum



© 2016 Mellanox Technologies 10- Mellanox Confidential -

Challenges: IV processing (seqiv)

 Reminder: HW needs to generate IV for LSO

 According to RFC4106 (The use of GCM in ESP) the initialization vector of ESP packets for a 

given key MUST NOT repeat.

 However, it is unspecified how uniqueness is ensured

 In Linux, a the ESP sequence number is used to ensure uniqueness, but it is XORed with a 

nonce randomly generated at xfrm_state initialization.

• Default for AES-GCM is crypto/seqiv.c

 Problem: Linux specific behavior needs to be implemented in hardware. Otherwise, the IV might 

be repeated.

 Solution: IV = ESP, then HW performs seqiv



© 2016 Mellanox Technologies 11- Mellanox Confidential -

ESP Tunnel Packets: LSO

IV
XOR IV with nonce 

(seqiv)



© 2016 Mellanox Technologies 12- Mellanox Confidential -

Test System Description

Ixia

ConnectX-4Lx 

40GbE

ConnectX-4Lx 

40GbE

Encryption 

Machine –

perf-009

Decryption 

Machine-

perf-010

IP 

forwarding

IP 

forwardingEncrypted

40GbE 40GbE

Innova

IPsec 

40GbE

Innova

IPsec 

40GbE

1.1.1.2

1.1.1.3

1.1.1.4

1.1.1.5

2.2.2.3

3.3.3.9 3.3.3.10

Forwarding rules:

1.1.1.2/32 -> 3.3.3.9 -> 3.3.3.10 -> 2.2.2.3/32

1.1.1.3/32 -> 3.3.3.9 -> 3.3.3.10 -> 2.2.2.3/32

1.1.1.4/32 -> 3.3.3.9 -> 3.3.3.10 -> 2.2.2.3/32

1.1.1.5/32 -> 3.3.3.9 -> 3.3.3.10 -> 2.2.2.3/32

Msg

$%^ Msg

1.1.1.1 2.2.2.2



© 2016 Mellanox Technologies 13- Mellanox Confidential -

Performance Results (ESP-Tunnel IPv4)

Single stream 

direction
Metric ESP no-offload ESP offload

Tx Throughput 4.5Gbps 25.5Gbps

Tx CPU 100% 100%

Rx Throughput 4.5Gbps 18.2Gbps

Rx CPU 75% 100%



© 2016 Mellanox Technologies 14- Mellanox Confidential -

Current Status

HW & Driver:

 ESP4 tunnel mode

 AES-GCM

• 128 or 256 bit keys

• 8,12 or 16 ICV

 LSO

 Checksum offload

 IV processing

 Statistics

 Capabilities

IPsec Stack:

 ESP4 + ESP6

 GSO

 Checksum offload

 Expose capabilities

Userspace:

 iproute2

 strongswan



© 2016 Mellanox Technologies 15- Mellanox Confidential -

Limitations

 Cannot support IP fragments

 Offloaded packets must be routed to the offloading device

• Software fallback when routed to wrong device?



© 2016 Mellanox Technologies 16- Mellanox Confidential -

Future

 ESP4 transport mode

 IPv6

 AES-CBC with HMAC-SHA1

 Extended Sequence Numbers

 Encapsulation support: IPsec over [VXLAN, Geneve, etc.]

 Offload replay protection

 RSS using inner headers



© 2016 Mellanox Technologies 17- Mellanox Confidential -

Implementation Details



© 2016 Mellanox Technologies 18- Mellanox Confidential -

New NDO

 New NDO called xfrmdev_ops

 int (*xdo_dev_state_add) (struct xfrm_state *x);

• Attempt to offload xfrm_state to hardware – might fail due to:

- Crypto unsupported

- Protocol unsupported (AH, IP compression)

- Encapsulation is not supported

 void (*xdo_dev_state_delete) (struct xfrm_state *x);

• Stop offloading xfrm_state in hardware

 void (*xdo_dev_state_free) (struct xfrm_state *x);

• Free hardware resources

 int (*xdo_dev_offload_ok) (struct sk_buff *skb, struct xfrm_state *x);

• Is it possible to offload crypto for this sk_buff?



© 2016 Mellanox Technologies 19- Mellanox Confidential -

Receive Flow

 Hardware identifies offloaded IPsec packet according to [dst IP, SPI, ip protocol]

 Decrypt and authenticate packet in hardware

• completion contains metadata regarding xfrm_state used and crypto operation result

 Populate skb->sp->ovec and skb->sp->xvec in driver

• New member of struct sec_path contains crypto offload information

 xfrm_input skips decryption, authentication and xfrm_state_lookup

 Process headers according to CHECKSUM_COMPLETE

 Note: Raw sockets (tcpdump) see plaintext ESP packets



© 2016 Mellanox Technologies 20- Mellanox Confidential -

Transmit Flow

 xfrm_output:

• xfrm_offload_ok(skb, x)

- Was xfrm_state offloaded?

- Can we offload this skb?

• For offload packets:

- Set skb->sp (SKB_CRYPTO_OFFLOAD)

- Set skb->encapsulation

- Skip checksum

 xfrm_output_one:

• GSO ESP packets need ESP header but no 

trailer

• New replay protection for GSO

 Note: Raw sockets (tcpdump) see 

plaintext ESP packets

 Network Device:

• Offload crypto according to skb->sp

• LSO and checksum offload leverage skb->inner_*

• Remove ESP trailer (if needed)



Thank You


