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In a multi-CPU server, memory modules are local to the CPU
to which they are connected, forming a nonuniform memory
access (NUMA) architecture. Because non-local accesses are
slower than local accesses, the NUMA architecture might
degrade application performance. Similar slowdowns occur
when an I/O device issues nonuniform DMA (NUDMA) oper-
ations, as the device is connected to memory via a single CPU.
NUDMA effects therefore degrade application performance
similarly to NUMA effects.

We observe that the similarity is not inherent but rather
a product of disregarding the intrinsic differences between
I/O and CPU memory accesses. Whereas NUMA effects are
inevitable, we show that NUDMA effects can and should be
eliminated. We present IOctopus, a device architecture that
makes NUDMA impossible by unifying multiple physical
PCle functions—one per CPU—in manner that makes them
appear as one, both to the system software and externally
to the server. IOctopus requires only a modest change to
the device driver and firmware. We implement it on existing
hardware and demonstrate that it improves throughput and
latency by as much as 2.7x and 1.28x, respectively, while
ridding developers from the need to combat (what appeared
to be) an unavoidable type of overhead.

CCS Concepts. « Hardware — Communication hard-
ware, interfaces and storage; « Software and its engi-
neering — Operating systems; Input / output.
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1 Introduction

In modern multi-CPU servers, each CPU is physically con-
nected to its own memory module(s), forming a node, and can
access remote memory of other nodes via a CPU intercon-
nect [2, 32, 82, 94]. The resulting nonuniform memory access
(NUMA) architecture can severely degrade application per-
formance, due to the latency of remote memory accesses and
the limited bandwidth of the interconnect [49].

NUMA effects are inevitable, because there are legitimate,
canonical application behaviors that mandate CPU access
to the memory of remote nodes—e.g., an application that
requires more memory than is available on the local node.
Therefore, despite extensive NUMA support in production
system and many research efforts [11, 15, 18, 21, 29, 43, 438,
49, 54, 85, 86], a “silver bullet” solution to the problem seems
unrealistic.

The NUMA topology is usually perceived as consisting of
CPUs and memory modules only, but it actually includes I/O
devices as well. CPUs are equipped with I/O controllers that
mediate direct memory access (DMA) by the device to system
memory. Consequently, device DMA to the memory of its
node is faster and enjoys higher throughput than accesses to
remote node memory. We refer to such DMA as nonuniform
DMA (NUDMA).

Similarly to NUMA, NUDMA can degrade performance
of I/O-intensive applications, and the many techniques pro-
posed for addressing the problem [11, 13, 28, 31, 35, 74, 81,
91, 92] only alleviate its symptoms instead of solving it.

This paper presents IOctopus, a device architecture that
makes NUDMA impossible once and for all. The observation
underlying IOctopus is that the similarity between NUMA
and NUDMA is not inherent. It is a product of disregarding
the intrinsic differences between device and CPU memory
accesses. I/O devices are external to the NUMA topology,



gaining access to it through the PCle fabric. It is therefore
possible to eliminate NUDMA by connecting the device to
every CPU, which allows it to steer each DMA request to
the PCle endpoint connected to the target node.

Crucially, the IOctopus architecture is not simply about
device wiring. In fact, there exist commercially available
NICs whose form-factor consists of two PCle cards that can
be connected to different CPUs [63]. There also exist “multi-
host” NICs [16, 38, 62] —aimed at serving multiple servers in
a rack [76]—that could be engineered to connect to multiple
CPUs within one server.

However, these commercial NIC architectures still suffer
from NUDMA effects, because they tacitly assume that a
PCle endpoint must correspond to a physical MAC address.
MAC addresses are externally visible, which prompts the OS
to associate the PCle endpoints with separate logical enti-
ties such as network interfaces. The IOctopus insight is that
decomposing one physical entity—the NIC—into multiple
logical entities is the root cause of NUDMA. This decompo-
sition forces a permanent association between a socket and
the PCle endpoint corresponding to the socket’s interface,
which, in turns, leads to NUDMA if the process using the
socket migrates to a CPU remote from that PCle endpoint.

Accordingly, IOctopus introduces a conceptually new de-
vice architecture, in which all of a device’s PCle endpoints are
abstracted into a single entity, both physically and logically.
The IOctopus model crystallizes that the PCle endpoints
are not independent entities. They are extensions of one
entity—the limbs of an octopus.

We describe the design and implementation of octoNIC,
an IOctopus-based 100 Gb/s NIC device prototype, and of
its device driver. We show that the IOctopus design enables
leveraging standard Linux networking APIs to completely
eliminate NUDMA. We also report on initial work to apply
IOctopus principles to NVMe storage media.

Our evaluation on standard networking benchmarks shows
that, compared to a Mellanox 100 Gb/s NIC which suffers
from NUDMA, the octoNIC prototype improves throughput
by up to 2.7x and lowers network latencies by 1.28X.

2 Background and Motivation

Modern servers are often multisocket systems housing sev-
eral multicore CPUs. Each CPU is physically connected to
its own “local” memory modules, forming a node. CPU cores
access “remote” memory of other nodes in a cache coherent
manner via the CPU interconnect. (For x86, this intercon-
nect is HyperTransport (HT) [2, 32] for AMD processors, or
QuickPath Interconnect (QPI) [82, 94] and, more recently,
UltraPath Interconnect (UPI) [5, 40] for Intel processors.)
Remote accesses into a module M are satisfied by the mem-
ory controller of M’s CPU. Node topology is such that some
nodes might be connected to others indirectly via intermedi-
ate nodes, in which case remote accesses traverse through
multiple memory controllers.
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Figure 1. I/O interactions might suffer from nonuniformity. There
are four types of such interactions: DMAs and interrupts (initiated
by I/O devices), and MMIO and PIO operations (initiated by CPUs).

2.1 NUMA

The ability to access both local and remote modules creates
a non-uniform memory access (NUMA) architecture that
poses a serious challenge to operating system kernel design-
ers. The challenge stems from the slower remote read/write
operations as well as the limited bandwidth and asymmetric
nature of the interconnect [49]. Together, these factors can
severely degrade the performance of applications.

Addressing the NUMA challenge is nontrivial. It involves
accounting for often conflicting considerations and goals,
such as: (1) bringing applications closer to their memory
and (2) co-locating them at the same node if they commu-
nicate via shared memory, while (3) avoiding overcrowding
individual CPUs and preventing harmful competition over
their resources (notably their cache and memory controller
capacities); (4) deciding whether it is preferable to migrate
applications closer to their memory pages or the other way
around; (5) weighing the potential benefit of migrating appli-
cation between nodes against the overhead of continuously
monitoring their memory access patterns at runtime, which
allows for (6) approximating an optimal node-to-application
assignment at any given time in the face of changing work-
load conditions.

Due to the challenging nature and potential negative im-
pact of NUMA, this issue serves as the focus of many research
and development efforts [11, 15, 18, 21, 29, 43, 48, 49, 54, 85,
86]. Production operating system kernels and hypervisors—
such as Linux/KVM, FreeBSD, and VMware ESXi—provide
basic NUMA support: by satisfying application memory al-
locations from within the memory modules of the node that
runs them [27, 31, 68, 88, 93]; by exposing the NUMA topol-
ogy to applications [17]; by allowing applications to decide
their node affinity [44]; and by automatically migrating vir-
tual memory pages residing on remote nodes to the local
node of the corresponding applications [20, 52, 80, 89].

2.2 The Problem of NUDMA - Nonuniform DMA

We usually perceive the NUMA topology as consisting of
CPUs and memory modules only. However, the topology con-
tains a third type of hardware—I/O devices—as illustrated in
Figure 1. In addition to memory controllers, CPUs have I/O



controllers, which mediate all memory interactions involv-
ing I/O devices. As each device is connected to a single I/O
controller, I/O interactions are nonuniform as well. Namely,
local interactions between the device and its node (CPUO
and DRAMO in Figure 1) are speedier and enjoy a higher
throughput as compared to remote interactions of the device
(with CPU1 and DRAM1), because the latter must traverse
through the CPU interconnect and therefore suffer from the
same NUMA limitations.

Most of the traffic that flows through I/O controllers is
typically associated with direct memory accesses (DMA)
activity, which takes place when devices read from or write to
memory while fulfilling I/O requests; we denote this activity
as nonuniform DMA (NUDMA). There are other forms of
nonuniform I/O: CPU cores communicate with I/O devices
via memory-mapped I/O (MMIO) and port I/O (PIO), and
devices communicate with cores via interrupts. These types
of interactions are also depicted in Figure 1. However, for
brevity, and since interrupts, MMIO, and PIO operations tend
to be fewer as compared to DMA operations, we overload the
term NUDMA to collectively refer to all types of nonuniform
I/O activity.

In Intel systems, whenever possible, Data Direct I/O (DDIO)
technology satisfies local DMAs using the last level cache
(LLC), keeping the DRAM uninvolved [37] (bottom/left ar-
row in Figure 1). But DDIO technology only works locally; it
does not work for remote DMA, thereby further exacerbat-
ing the problem of nonuniformity. The negative implications
of the inability to leverage DDIO technology are more than
just longer latency. With the ever increasing bandwidth of
I/O devices, studies show that DRAM bandwidth is already
becoming a bottleneck resource [3, 55]. This problem further
increases the motivation to utilize DDIO, as serving DMA
operations using the caches may substantially reduce the
load that the DRAM modules experience [45].

We note that NUDMA activity frequently translates to
“traditional” NUMA overheads. For example, if a device DMA-
writes to some memory location that is currently cached by
a CPU remotely to the device, then the corresponding cache
line L is invalidated as a consequence, and the CPU has to
fetch L from DRAM when subsequently accessing it.

No good solutions to the NUDMA problem exist, and so
the relevant state-of-the-art is limited, consisting of recom-
mending to users to manually pin I/O-intensive applications
to the node that is connected to the corresponding device
[13, 28, 31, 35, 81, 92], automatically doing such pinning
[14, 30, 74, 77, 78, 87], and migrating some of the threads
away from the said local node if it becomes overloaded [11].
Significant effort was invested in making OS schedulers
NUDMA-aware [11, 74, 81, 91], which makes an already
very sophisticated and sensitive sub-system even more com-
plex and harder to maintain. All of these techniques clearly
do not solve the NUDMA problem and only try to alleviate

some of its symptoms if/when possible. It seems there is little
else that can be done.

2.3 Multiple Device Queues Do Not Solve NUDMA

Modern high-throughput I/O devices—NICs in our context—
support multiple per-device queues. Using these queues, the
operating system and the device work in tandem to increase
parallelism and improve memory locality. IOctopus uses de-
vice queues, but they alone are ineffective against NUDMA.

A queue is a cyclic array (known as a “ring buffer” or
simply a “ring”) in DRAM, which the OS accesses through
load/store operations, and the device accesses using DMA.
The queue consists of descriptors that encapsulate I/O re-
quests, which are issued by the OS and are processed by the
device. NICs offer two types of queues: transmit (Tx) queues
for sending packets from DRAM to the outside world, and
receive (Rx) queues for traffic in the opposite direction. Fach
such queue instance may be further subdivided to two rings,
such that one is associated with the requests (that the CPU
asks the device to process) and the other is associated with
the responses (that the device issues after processing the
corresponding requests).

When the device is local to the node, the OS carefully uses
Tx queues to increase memory locality. Here, we outline
how the Linux kernel accomplishes this goal with Transmit
Packet Steering (XPS) [53]; other kernels use similar mecha-
nisms [26, 67]. The Linux network stack maps each core C
to a different Tx queue Q, such that Q’s memory is allocated
from C’s node. Additionally, memory allocations of pack-
ets transmitted via Q are likewise fulfilled using the same
node. Cores can then transmit simultaneously through their
individual queues in an uncoordinated, NU(D)MA-friendly
manner while avoiding synchronization overheads. When a
thread T that executes on C issues a system call to open a
socket file descriptor S, the network stack associates Q with
S, saving Q’s identifier in the socket data structure. After
that, whenever T transmits through S, the network stack
checks that T still runs on C. If it does not, the network stack
updates S to point to the queue of T’s new core. (The actual
modification happens after Q is drained from any outstand-
ing packets that originated from S, to avoid out-of-order
transmissions.)

Assuming the device is local to the node, receiving pack-
ets with good memory locality is also possible, although it
is somewhat more challenging than transmission and re-
quires additional device support. Linux associates separate
Rx queues with cores similarly to Tx queues, such that the
associated ring buffers and packet buffers are allocated lo-
cally. The difference is that, when receiving, it is not the OS
that steers the incoming packets to queues, but rather the
NIC. Therefore, modern NICs support Accelerated Receive
Flow Steering [53] (ARFS) by (1) providing the OS with an



API that allows it to associate networking flows' with Rx
queues, and by (2) steering incoming packets accordingly.
When the OS migrates T away from C, the OS updates the
NIC regarding T’s new queue using the ARFS APIL Once
again, the actual update is delayed until the original queue
is drained from packets of S, to avoid out-of-order receives.
Together, XPS and ARFS improve memory locality, and
they eliminate all NU(D)MA effects if the device is local to
N—the node that executes T. However, both techniques are
ineffective against remote devices. For example, assume that
the NIC is remote to N, and that L is a line that is cached
by the CPU of N. If L holds content of an Rx completion
descriptor or packet buffer that will soon be DMA-written
by the NIC on packet arrival, then L will have to be invali-
dated before the NIC is able to DMA-write it, as DDIO is not
operational when the device is remote. When L is next read
by T, its new content will have to be fetched from DRAM.

2.4 Remote DDIO Will Not Solve NUDMA

Even if hardware evolves and extends DDIO support to ap-
ply to remote devices, NU(D)MA effects nevertheless persist.
Even if the NIC could write to a remote LLC, its accesses
would suffer from increased latency on the critical data path,
while contending over the bandwidth of the CPU intercon-
nect (Figure 1). A less drastic remote DDIO design would
allocate the line written by the NIC in the local LLC even
if the target address belongs to another node. However, the
remote CPU would still have to read the data from the NIC’s
node, resulting in cache lines ping-pongs between nodes and
again increasing the critical path latency.

We empirically validate that the latter remote DDIO de-
sign does not alleviate NU(D)MA overheads in a significant
way as follows. Remote DDIO already partially works for
DMA-writes in cases where a response ring (containing I/O
request completion notifications) is allocated locally to the
device and remotely to the CPU. Let us denote the latter
ring as R. After receiving a packet, the NIC DMA-writes to R
the corresponding completion notification. In this case, the
physical destination of the DMA is the LLC of the CPU that
is local to the NIC, because device-to-memory write activity
allocates cache lines in the LLC when the target memory is
local to the device [37]—as is the case for R. In the pktgen
benchmark experiment (described in detail in §5), which is
dominated by memory accesses to rings, we find that allocat-
ing R remotely to pktgen and locally to the NIC yields only
a marginal performance improvement of up to 2%.

2.5 Multiple Devices Do Not Solve NUDMA

NUDMA effects can be potentially alleviated by installing
multiple identical I/O devices, one for each CPU, thus allow-
ing all cores to enjoy their own local device [83, 87]. Let us

!An IP flow is uniquely identified by its 5-tuple: source IP, source port,
destination IP, destination port, and protocol ID.

assume that the system’s owner is willing to tolerate the
potentially wasted bandwidth and added hardware price as-
sociated with purchasing a different NIC for each CPU node
in each server along with enough network switches with
enough ports to connect all these NICs. This costlier setup
can help to curb NU(D)MA effects, but only if the workload
is inherently static enough to ensure that all threads remain
in their original nodes throughout their lifetime. (And of
course only if these threads are limited to exclusively using
local devices.)

In contrast, dynamic workloads that require load balanc-
ing between CPUs will experience NU(D)MA overheads,
because, technically, once a socket S is established, there is
no generally applicable way to make the bytes that it streams
flow through a different physical device. Therefore, using
the above notation, if a thread T migrates from one CPU
to another, its socket file descriptor S will still be served by
the device at the original node, thereby incurring NU(D)MA
overheads.

With Ethernet, for example, the inability to change the
association between S and its original NIC stems from the
fact that an IP address is associated with exactly one MAC.
While it is possible to transition this IP address from one
NIC (and MAC) to another, doing so would mean that all
the other threads that use this IP address would either lose
connectivity or have to change their association as well,
potentially causing new NUDMA effects.

When a server is connected to a switch through multi-
ple NICs, it may instruct the switch to treat these NICs as
one channel (called “bonding” [51] or “teaming” [50]), if the
switch supports EtherChannel [19] or 802.3ad IEEE link ag-
gregation [33]. This approach does not eliminate NUDMA
activity as well, because there is no way for the server to
ask the switch to steer flows of some thread T to a specific
NIC, and then to another NIC, based on the CPU where T
is currently executing. Switches do not support, for exam-
ple, a mechanism similar to the aforementioned ARFS (§2.3).
(While SDN switches have similar capabilities [75], they typ-
ically do not provide individual hosts with the ability to steer
between aggregated links.) It is possible to design switches
that support ARFS-like functionality, but we will have to
replace all the existing infrastructure to enjoy it.

2.6 Technology Trends: One Device May Be Enough

In addition to the fact that multiple I/O devices do not solve
the NUDMA problem (§2.5), in the case of networking, we
contend that technology trends suggest that the I/O capacity
of a single device should typically be enough to satisfy the
needs of all the CPUs in the server. Figure 2 depicts these
trends by showing the past and predicted progression of
the network bandwidth that a single NIC supports vs. the
network bandwidth that a single CPU may consume. The two
NIC lines shown correspond to the full-duplex throughput
of a single- and a dual-port NIC, respectively.



NIC —%—
1600 | CPU —H— T
1400 |
1200 |
1000 |

800 -

600 -

throughput [Gbps]

400

~32x

200

Lle) 8o 7 o 4 56 7 So ‘340980‘?90 q@c
L L L L L L L

2008 2010 2012 2014 2016 2018 2020
year

Figure 2. The bandwidth of the NIC exceeds what a single CPU
could use. Top labels show Ethernet generations. Bottom labels show
the number of cores per CPU. (Data taken from various sources corre-
sponding to Intel/AMD CPUs [8, 39, 70] and Mellanox and Intel NICs
[6, 34, 39, 58, 59, 65].)

The bottom-most CPU line assumes that every core in
the CPU consumes 513 Mbps. This figure reflects an upper
bound on the per-core TCP throughput that was reported for
Amazon EC2 high-spec instances (4xlarge and up: 8xlarge,
12xlarge, etc.) with 8 and more cores when all cores concur-
rently engage in networking [7, 90]. An earlier report from
2014 shows that 8-core instances of four cloud providers
(Amazon, Google, Rackspace, and Softlayer) consume at most
380 Mbps per core [71].

The upper CPU line assumes an unusually high per-core
rate of 10 Gb/s TCP, which is about 50% of a core’s cycles
in a bare-metal setup when running the canonical netperf
benchmark [42]; let us assume the other 50% is needed for
computation, as netperf does not do anything useful. The
number of cores shown reflects the highest per-CPU core-
count available from Intel and AMD for the corresponding
year. We multiply the assumed maximal per-core bandwidth
with the highest core count and display the product as the
maximal throughput that one CPU may produce/consume
(optimistically assuming that OSes can provide linear scal-
ing when all CPU cores simultaneously do I/O). The figure
indicates that one NIC is capable of satisfying the needs of
multiple CPUs, even in such a demanding scenario. Others
have reached a similar conclusion [46].

3 Design

In this section, we describe the design of IOctopus, which
consists of hardware and software components that together
eliminate all NUDMA effects. We begin by observing the
inherent differences between NUMA and NUDMA that make
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Figure 3. NUMA effects are inevitable for some canonical algo-
rithm classes, which dictate that CPU cores in one NUMA node must
access the memory of another (a—c). NUDMA effects are likewise
presently unavoidable (d), but not due to true node sharing.

IOctopus possible (§3.1). We next describe the hardware/firmware

support that IOctopus necessitates in wiring (§3.2) and net-
working (§3.3). We then describe the software, operating
system aspect of IOctopus, which introduces a new type
of I/O device that is local to all CPUs (§3.4). In the subse-
quent section, we describe how we implemented all of these
components (§4).

3.1 True and False Node Sharing

NUMA effects cannot be eliminated. This is true despite the
extensive NUMA support provided by production system
and all of the associated research efforts (§2.1). NUMA ef-
fects are inevitable because there are legitimate, canonical
algorithm classes that mandate CPU cores to access the mem-
ory of remote NUMA nodes. Let us use the term “true node
sharing” to denote such situations, where, algorithmically,
it is impossible to avoid NUMA effects, as CPU cores are
meant to access memory of remote nodes, by design.

True node sharing occurs, for example: when a single
thread running on a single core solves a problem that requires
more memory than is available on the local node (Figure 3a);
or when the problem being solved requires relatively little
memory and is housed by a single node, but additional cores—
more than are available on the local CPU—can accelerate the
solution considerably (Figure 3b); or when the problem is
solved with a classically-structured parallel job, where each
thread is assigned a core to execute a series of compute steps,
separated by communication steps whereby all threads read
from the memory of their peers in order to carry out the
subsequent compute step (Figure 3c) [24].

The initial insight underlying the design of IOctopus is
that NUDMA activity is not the result of true node sharing.
This is so because, by definition (§2.2), NUDMA activity does
not involve cores accessing any memory modules, neither
local nor remote (Figure 3d). Instead, it is the device that
accesses the memory.

More specifically, as its name suggests, the NUMA archi-
tecture intentionally makes memory accesses of CPU cores
nonuniform. It employs a distributed memory controller that



unifies the memory modules spread across all nodes into a
single coherent address space. Memory access latencies expe-
rienced by cores are then determined by the internal topology
of the distributed memory space. In contrast, I/O devices are
entirely external to this topology, gaining access to it via
a PCle fabric. Thus, the specific connection point between
the PCle fabric and the NUMA memory space determine
memory access latencies that devices experience. Namely,
assuming it is possible to connect the NIC in Figure 3d via
PCle to both CPUs, then, in principle, it may be possible to
eliminate NUDMA effects.

In light of the above, we denote NUDMA effects as hap-
pening due to “false node sharing.” When restating our afore-
mentioned insight using this terminology, we can say that
the inherent difference between NUMA and NUDMA ef-
fects is that the former are the result of true node sharing,
whereas the latter are the result of false node sharing. This
articulation is helpful, because it highlights why, in principle,
NUDMA effects may be avoidable.

3.2 Wiring Hardware Support

Connecting I/O devices via PCle to only a single CPU is an
old, standard practice, which is so pervasive that it appears as
carved in stone. Consequently, one might easily mistakenly
believe that there are sound technical reasons that prevent us
from connecting a device to multiple CPUs. However, this is
not the case. Such connectivity already exists in production,
and we contend that its availability will become more and
more prevalent in the future, as discussed below.

Before we conduct the discussion, however, it is essential
to note that, by itself, connecting an I/O device to multiple
CPUs does not eliminate NUDMA. Rather, such connectivity
is equivalent to using multiple devices, as discussed in §2.5.
Namely, for technical reasons explained later on, connecting
a device to multiple CPUs translates to adding more PCle
endpoints to the PCle fabric, such that each endpoint is local
to its own CPU but remote to all the rest.

PCle Bifurcation and Extenders Currently, probably the
most straightforward approach that can be used to connect
one I/O device to multiple CPUs is through PCle bifurcation
[41], which enables splitting a single PCle link into several.?
The vendor of the I/O device can implement different types
of bifurcation, e.g., a 32-lanes PCle link width could be split
into 2 or 4 PCle endpoints with a link width of 16- and 8-
lanes, respectively. The additional endpoints that bifurcation
creates could be connected to other CPUs.

In some bifurcation cases—e.g., splitting 16 lanes into two
8-lane endpoints connected to different CPUs—the resulting
available bandwidth between the device and a single CPU
may not be sufficient for certain workloads. To alleviate this
problem, vendors can support extending, say, a 16-lane PCle

2The citation [41] refers to a bifurcating one CPU PCle link into multiple
links to the same CPU; we are presenting bifurcating to multiple CPUs here.

device with an additional 16-lane PCle endpoint (provided
that internally the device has 32-lanes; additional resources
are required [66].

Attesting the architectural viability of PCle bifurcation
to connect a single I/O device to multiple targets is the fact
that Broadcom, Intel, and Mellanox already produce “multi-
host” NICs [16, 38, 62]. The goal of a multi-host NIC is to
simultaneously serve 2-4 physical servers in a consolidated
manner [76]. Given that such connectivity works for multiple
servers in a rack, it stands to reason that it should also work
for multiple CPUs within one server.

IOctopus is a joint project developed by several organi-
zations, including Mellanox, which is a networking vendor.
Mellanox already manufactures a NIC that employs bifurca-
tion to be able to connect to multiple CPUs using standard
PCle extenders [64].

Motherboard Hard-Wiring The drawback of connecting
one I/O device to multiple CPUs with PCle extenders is the
additional cabling, which takes up space within the server
and complicates its packaging. An alternative that does not
suffer from this drawback is for motherboard vendors to
include this cabling directly, built into the motherboard. This
approach, however, reduces flexibility, because hard-wired
motherboard PCle lanes cannot be rewired like PCle ex-
tenders. Therefore, an improved alternative is to support
motherboard riser cards that eliminate the need to use ex-
tender cabling but still provide some flexibility. Risers are
expansion cards that host I/O devices and connect to the
motherboard, such that different type of riser cards may pro-
vide different PCle wiring. For example, whereas one riser
card may employ bifurcation to split the available lanes and
connect to all CPUs, another may connect all the lanes to a
single CPU, in the old-fashioned way.

In addition to Mellanox, the organizations that develop
IOctopus also include Dell, which is a server vendor. The
next generation of Dell servers (available in 2020) provides
riser cards that allow clients to connect a single I/O device
to multiple CPUs [22]. The latest generation of Dell servers
provides riser cards that allow clients to connect a single I/O
device to multiple CPUs.

Programmable PCle Switching The main drawback of
extenders and motherboard hard-wiring is that they are
static: lanes are partitioned in a certain way, and any change
requires manual reconfiguration (such as switching riser
cards). A more flexible solution is to use an onboard pro-
grammable PCle switch that may connect all I/O devices to
all CPUs. The benefits of this approach are: that it is dynamic
and therefore eliminates the need for manual reconfigura-
tion; that it requires no additional external physical hard-
ware (PCle extenders and riser cards); and that it additionally
supports peer-to-peer DMA communications between differ-
ent PCle devices, which may be important for I/O intensive
workloads. The drawbacks of this approach compared to



bifurcation or hard-wiring are that it is pricier, adds latency
to individual operations, consumes more power and that it
requires more lanes to support all switch configurations.

3.3 Networking Hardware Support

Simply connecting a NIC to multiple CPUs does not elimi-
nate the NUDMA problem, because existing devices are de-
signed tacitly assuming that a PCle endpoint (also referred
to as physical function or PF) must correspond to a physical
MAC address. Consequently, the OS associates NIC PFs with
separate logical entities such as network interfaces and IP
addresses. The IOctopus insight is that this decomposition
of one physical entity—the NIC—into multiple logical enti-
ties is the root cause of NUDMA. Forcing a socket’s unique
association with an interface to imply a unique association
with a PF leads to NUDMA whenever the socket’s owner is
scheduled on a CPU remote from the PF.

To address this design problem, IOctopus introduces a
conceptually new multi-PF device model. In IOctopus, all
PFs are abstracted into a single entity, both physically and
logically. An IOctopus NIC (octoNIC) has a single interface
with the external world—a single physical port and MAC
address. Similarly, the OS associates the octoNIC with a
single interface and IP address (§3.4). The IOctopus model
crystallizes that the PFs are extensions of one entity—the
limbs of an octopus—and not independent entities.

With the IOctopus model, I/O traffic is no longer associ-
ated a priori with a PF. The OS needs to transmit data through
the octoNIC PF local to the transmitting CPU (§3.4), and the
octoNIC must steer incoming traffic to the PF local to the
CPU on which the receiving process runs on.

To facilitate this steering, we propose a new NIC feature,
IOctoRFS. With IOctoRFS, the octoNIC provides the OS with
an API to associate a flow 5-tuple with the PF to which the
flow’s traffic should be steered. The OS updates IOctoRFS
mappings exactly as it updates ARFS mappings (§2.3) to-
day. Figure 4 depicts the overall design. IOctoRFS can be
implemented with modest firmware changes by combining
existing multi-PF NIC hardware features (§4).

To eliminate NUDMA, IOctopus must handle the corner
case in which a single packet spans pages from different
NUMA nodes. This scenario can only occur when the trans-
mitted buffers are not allocated by the NIC’s driver. (E.g.,
when using sendfile() to transmit data directly from the
page cache, where buffers might span NUMA nodes.) In con-
trast, received packets are DMAed into buffers allocated by
the NIC driver. The driver can guarantee that these buffers
do not span NUMA nodes by allocating them appropriately.

IOctoRFS does not suffice to address packets whose data
spans NUMA nodes, since no single PF can access the packet
over PCle without incurring NUDMA. We propose an IOc-
t0SG (scatter-gather) feature that allows the driver to provide
a hint in ring descriptors specifying which PF to use when
accessing each fragment.
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Memory ordering issues Whenever packet data is read
or written by a single octoNIC PF, IOctopus does not re-
quire different OS handling (compared to a standard NIC) to
maintain correct memory ordering of DMAed data—i.e., to
guarantee that data DMAed to/from memory be correctly
observed by the CPU/device. Consequently, the only possible
problematic case could be with IOctoSG used to transmit
data that spans NUMA nodes. However, the CPU memory
ordering primitives used by the OS to guarantee that a de-
vice correctly observe transmitted data are agnostic to the
device’s PF. These primitives provide a more coarse-grained
guarantee, namely, that the transmitted data is observable to
any external devices.® Therefore, IOctopus does not require
any special handling on the OS even for data transmitted
using IOctoSG.

3.4 Software

Our design is grounded in the following principles:

Transparency OctoNIC’s physical structure should be trans-
parent to applications and the networking stack. Just as the
octoNIC appears to the outside world as a single physical
entity, so should it appear to the software stack—a NIC with
one networking interface, which applications can use and
experience no NUDMA activity.

The goal of transparency rules out alternative NUDMA so-
lutions, such as using multiple NICs (Figure 5b) or Mellanox’s
existing solution [64]. These approaches represent each PF
of the device as a separate logical entity, and thus, NUDMA
cannot be avoided transparently. For instance, both these
approaches require the OS to maintain separate Rx/Tx rings
per-PF (Figure 5b), whereas IOctopus does not (Figure 5c¢).

3For example, Linux on ARM uses a dmb(oshst) instruction, which makes
the data visible in the “outer shareable domain,” which captures “other
observes” such as a “GPU or DMA device.” [9].



Locality IOctopus software should work alongside the oc-
toNIC to guarantee that data flowing between the NIC and
an application is dynamically steered to the PF that is local to
the application’s CPU. For instance, achieving locality would
allow the OS scheduler to disregard NUDMA considerations
in its scheduling decisions (§2.2).

In accordance with the above, IOctopus software is a de-
vice driver that presents the multi-PF octoNIC as a single
logical device to the system. Moreover, the IOctopus driver
piggybacks on existing ARFS and XPS kernel functionality
to (1) make sure data is transmitted through the PF local to
the sending CPU and (2) update IOctoRFS so that arriving
data is steered to the PF local to the CPU of the receiving
process.

4 Implementation

4.1 OctoNIC Prototype

We have implemented an octoNIC prototype by modifying
the firmware of a Mellanox 100 Gb/s NIC with a bifurcated
PCle interface [63] The NIC’s 16 PCle lanes are bifurcated
into two 8-lane buses, and we connect them to each CPU of
a dual node system (Figure 5c).

The modified firmware implements IOctoRFS by compos-
ing two existing features of multi-PF NICs. The first is the
mechanism used for ARFS (§2.3), which maps flows to Rx
queues. The second is an integrated multi-PF Ethernet switch
(MPFS), which steers incoming traffic to PFs based on their
target MAC address [16, 36, 60].* In principle, IOctoRFS sim-
ply requires the NIC to store another mapping, from Rx
queue id to the PF local to the queue’s CPU. The IOctoRFS
switch then steers an arriving packet to the right PF by
mapping it to a queue id and then to a PF. The storage size
required for the queue-to-PF table is negligible.

Our prototype takes a different approach, however, to
avoid changing the NIC’s processing logic—specifically, that
the NIC maintains ARFS tables per-PF, not globally. To ac-
commodate this property, we modify the MPFS to map pack-
ets to a PF based on their flow 5-tuple instead of the MAC
address. With the PF determined, the NIC looks up the target
Rx queue in the PF’s ARFS table as usual.

Our prototype does not implement IOctoSG.

4.2 OctoNIC Driver

We considered two alternatives to present the octoNIC to the
OS network stack as a single networking device (netdevice):
(1) modify the vendor driver to create a single netdevice
that hides the underlying octoNIC PCle endpoints; or (2)
keep the existing driver, which creates a netdevice for each
PCle endpoint, but use an additional software layer that ag-
gregates IOctopus netdevices into a single virtual interface.
While the first approach is transparent for the OS, it requires

4The MPFS exists to support configurable MAC addresses and SR-IOV.

considerable changes to a complicated vendor device dri-
ver. Therefore, we chose to add a special IOctopus mode to
Linux’s existing team driver [23, 50], which allows teaming
multiple network interfaces into a single logical interface.

Receive The octoNIC driver needs to maintain the NIC’s
MPFS tables so that arriving packets are handed to the CPU
on which the receiving process runs. To handle process CPU
migrations, we re-use the existing ARFS callback in the Linux
kernel, which informs a networking driver when a process
migrates between CPUs. (The OS takes care to invoke the
callback only after the network stack has dequeued incoming
packets on the old CPU’s Rx queue, to avoid out-of-order
packet delivery.)

The octoNIC driver maintains a mapping of flow 5-tuples
to MPFS metadata rules. When the driver receives an ARFS
callback, it determines if it should add a new entry to the
MPFS table or an existing entry needs to be updated to steer
the flow to a different NUMA node. The MPES table is then
updated asynchronously by a separate kernel worker thread.
Similarly to Linux ARFS, we use a separate kernel thread to
periodically search for expired rules and delete them from
the driver tables and the device.

Transmit Generally, when handed an outgoing packet by
the networking stack, the octoNIC driver transmits it through
the octoNIC PCle endpoint that is local to the current CPU, as
the data is hot in its LLC. The only complication is avoiding
out-of-order packet transmission after process CPU migra-
tion because there is no OS callback for when the previous
Tx queue empties. However, Linux’s XPS (§2.3) packet meta-
data has this information (a per-packet (0ooo_okay) flag), so
our driver obtains it from there.

Implementation effort IOctopus does not change any ker-
nel APIs. The octoNIC team device driver consists of 463
lines of code (LOC), we added 6 LOC to the libteam library
that configures team devices. We further added/changed 23
LOC in the kernel and 50 LOC in the Mellanox NIC driver.

5 Evaluation

We experimentally evaluate IOctopus to answer the follow-
ing questions: By how much does eliminating NUDMA im-
prove the throughput and latency of I/O traffic (§5.1)? What
is the impact of NUDMA elimination on unrelated processes
that share the CPU with I/O workloads (§5.2)? How effective
is IOctopus in handling process migration between CPUs
(85.3)? And finally, what is the result of applying IOctopus
principles and design to storage I/O (§5.4)?

Experimental setup We use two Dell PowerEdge R730 ma-
chines, a client and a server. Each machine has two 14-core
2.0 GHz Intel Xeon E5-2660 v4 (Broadwell) CPUs, connected
via two 9.6 GT/s QPI links. Each machine has 128 GB of mem-
ory (4x16 GB DIMMs per socket). Both machines run Ubuntu



16.04 with Linux kernel 4.14.110, and have hyperthreading
and Intel Turbo Boost (dynamic clock rate control) disabled.

The client is equipped with a 100 Gb/s Mellanox ConnectX-
4 NIC [61]. The server has a Mellanox 100 Gb/s NIC with a
bifurcated PCle interface [63]. The client is connected back-
to-back to one of the server NIC’s ports. NIC drivers are
configured to use a descriptor ring per core with even distri-
bution of interrupts between cores. Linux adaptive interrupt
coalescing is enabled.

Evaluated configurations By default, the server’s NIC ap-
pears to the OS as two NICs, each connected to a different
CPU. By loading our IOctopus firmware, we can turn the
server’s NIC into an octoNIC. Our experiments compare
three server configurations: (1) local and (2) remote, which
use the standard firmware and where the utilized NIC is local
or remote, respectively, to the socket on which the workload
(including interrupt handling) runs and to which allocated
memory belongs; and (3) IOctopus, in which the NIC acts
as an octoNIC. The remote configuration triggers NUDMA
activity. The IOctopus and local results are usually identical,
in which case we report them as a single ioct/local configura-
tion in the figures. The client-side of the workload uses the
socket local to its NIC and so incurs no NU(D)MA effects.

5.1 Impact on I/O Traffic
5.1.1 Throughput Impact

We evaluate TCP throughput using the TCP-STREAM test of
the netperf [42] benchmark. In these tests, the process repeat-
edly receives (or transmits) a fixed-size buffer from (or to) a
TCP socket. We run the benchmark for 60 seconds and report
averages of 11 runs. We perform single-core experiments,
in which both process and OS networking activity (such as
interrupt processing) run on a single core, and multi-core
experiments.

Single-core receive (Rx) Figure 6 shows the throughput,
memory bandwidth used, and CPU utilization as we vary the
netperf buffer size; numbers above the ioct/local throughput
curve report its throughput relative to the remote CPU. Both
configurations are bottlenecked by the CPU. The ioct/local
throughput is always higher than that of remote, with the
relative advantage depending on the amount of data trans-
ferred per packet. When the netperf buffer size exceeds the
1500-byte MTU, and all received packets become MTU-sized,
ioct/local outperforms remote by about 1.25%. This through-
put gap is due to ioct/local benefiting from DDIO, which
allows the CPU to read received data from the LLC rather
than memory. The lack of DDIO in remote results in a mem-
ory bandwidth use of 3x the network throughput.

Single-core transmit (Tx) Figure 7 shows the results of
the Tx workload. The Tx path uses the NIC’s TCP Segmenta-
tion Offload (TSO) functionality, which allows the kernel to

aggregate sent data into 64 KB TCP segments before hand-
ing it to the NIC. As a result, both configurations more than
double their throughput compared to the Rx workload. Un-
like the Rx workload, however, both configurations obtain
comparable throughput.

The reason for this behavior is that in both configurations,
the CPU writes to its working set—which is hot in the LLC—
without incurring cache misses. This behavior is expected
for ioct/local (due to DDIO), but may be surprising for remote.
We believe that to guarantee DMA coherency, remote DMA
reads are satisfied by probing the LLC and DRAM in parallel.
If the target line is in the LLC, the DMA is serviced from
there, without invalidating the line; otherwise, the line is
read from DRAM. The fact that remote’s memory bandwidth
consumption is equal to its obtained throughput supports
this hypothesis: If DMA reads were satisfied by evicting the
line in order to read it from memory, memory bandwidth
usage would have been double the throughput. °

Multi-core throughput We evaluate multi-core performance
by running a netperf instance on each core of the machine.
Having multiple cores driving the workload shifts the bottle-
neck from the CPU to the network, and both configurations
are able to sustain line rate. However, ioct/local incurs mem-
ory traffic, unlike the single-core workloads. The reason is
that the combined working set of all the cores exceeds the
LLC size. Due to space constraints, we omit the figures.

Single-core packet throughput Raw packet transmission
rates are important for packet-based network functions, such
as gateways, routers, load balancers, etc. To evaluate packet
throughput, we use pktgen [73], an in-kernel tool for gen-
erating packets at high speeds. Figure 8 shows the result-
ing throughput (Gb/s) and memory bandwidth for various
packet sizes. (In all experiments, CPU utilization is 100%.)
We observe a striking difference from the TCP Tx through-
put experiment. Whereas with TCP Tx the throughput of
the configurations is comparable, here ioct/local consistently
obtains 1.3X the throughput of remote.

This throughput difference is due to the orders-of-magnitude
higher rate of packet transmissions (i.e., packets handed
to the NIC), which causes per-packet NUDMA effects to
become significant. In the TCP Tx experiment, CPU work
dominates by copying the sent data from the process to the
kernel, and—due to TSO—the CPU hands the NIC 64 KB
segments. Thus, the highest TCP Tx packet rate is 91K
(= 47 Gb/s/64 KB segments) packet per seconds (PPS). In
a TCP Tx experiment without TSO (not shown), the packet
rate increases to ~ 500 KPPS (but throughput is much lower).
In contrast, pktgen repeatedly transmits the same IP packet
without touching any data. Consequently, ioct/local is able to
transmit 4.1 MPPS, and remote transmits 3.08 MPPS. At these

5This observation implies that Intel’s statement that “DDIO technology only
works locally” (§2.2) refers only to DMA writes. Indeed, Intel’s documents
do not precisely define what “works” means.
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Figure 6. Single-core TCP stream receive.
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Figure 8. (a) Network throughput and (b) memory bandwidth uti-
lization when using the pktgen benchmark with a single core.

rates, per-packet transmission cost determines the through-
put. Due to DDIO, ioct/local does not experience LLC misses,
whereas remote incurs one LLC miss per packet. This miss
results from reading the completion entry that the NIC writes
after transmitting a packet. Reading this entry from memory
costs about 80 ns, which is essentially the delta between the
per-packet costs of ioct/local and remote.

5.1.2 Latency Impact

To measure TCP latency, we use a single-core netperf re-
quest/response benchmark (TCP RR). This benchmark mea-
sures the latency of sending a TCP message of a certain size
from the server machine to the client machine and receiving
a response of the same size. We run the benchmark for six
minutes and report the average round-trip time. (We verify
that this average is stable across runs.) To minimize latency,
we disable adaptive interrupt coalescing.

We compare configurations in which both server and
client utilize the NIC local or remote, respectively, to their
CPUs. These are indicated as Il and rr, respectively. Results
when the server’s NIC acts as an octoNIC are identical to the
results obtained with a local NIC, and so are not reported
separately.

Figure 7. Single-core TCP stream transmission (TSO enabled).
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Figure 9. Latency of netperf TCP RR with NUDMA effects (rr)
normalized to latency without NUDMA effects (11). rr/ll indicates
whether both server and client use local or remote NICs, respectively.
An nd suffix indicates DDIO is disabled on both server and client.

Figure 9 shows the latency obtained for various message
sizes, normalized to the Il configuration. For a given message
size, having NUDMA operations on the critical path adds an
overhead of 10%-25% over II. The 90" and 99" percentile
latency (not shown) behaves similarly. To tease apart the
overhead of QPI interconnect crossings, we further measure
an llnd configuration, which is Il but with both sides having
DDIO disabled in hardware [69, 84]. In both lind and rr, the
CPUs access DRAM to interact with the NIC and any latency
difference is due to the QPI. We find that crossing the QPI
imposes a latency overhead of 5%-15%. The takeaway here
is that even if DDIO worked for remote NICs, IOctopus would
still eliminate substantial QPI latency overhead.

5.1.3 Key-Value Store

To evaluate the benefit of IOctopus on a real-world appli-
cation, we measure the aggregated throughput of a single
memcached [25] key-value store accessed by 14 memslap [4]
instances running on one client CPU. We use keys and values
of 256 bytes and 512 KB, respectively, which reflect recent
reports of key/value size in production workloads [1]. Here,
local and remote refer to configurations in which memcached
server and clients use the NIC local or remote, respectively,
to their CPU. As before, when the server NIC’s acts as an
octoNIC, the results are identical to local, and are shown as
ioct/local.
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Figure 10. Memcached throughput and server memory bandwidth,
as the ratio of SET operations grows from 0% to 100%.

Figure 10 shows the results as we vary the ratio of SET
operations. The advantage of ioct/local over remote grows
up to 16% with the ratio of SETs because these operations
cause TCP Rx traffic that suffers from NUDMA effects, as
discussed previously. The working set here is larger than in
the netperf TCP Rx experiments (indicated by the fact that
ioct/local has memory activity), and thus the NUDMA effects
are less pronounced.

5.2 Co-Location

To achieve high utilization, data-center operators place mul-
tiple workloads on the same physical machine. For example,
a single server may host a latency sensitive workload as
well as a low priority batch computation workload. Here, we
evaluate the effect NUDMA has on such configurations.

QPI congestion. We measure the effect that QPI load has
on single-core TCP Rx throughput (netperf) and 64-byte UDP
message latency (using sockperf [57]). To load the QPI, we
occupy the other server cores with pairs of the STREAM [56]
memory bandwidth benchmark. Both STREAM instances in
each pair target memory remote to their CPU, one reading
and the other writing. Figure 11 shows the throughput re-
sults. Both ioct/local and remote suffer as STREAM activity
increases, but ioct/local obtains 1.82X-2.67x higher through-
put than remote. The latency results (Figure 12) are similar,
with ioct/local obtaining 10%-22% lower latency than remote.
Since the latency benchmark is not data-intensive, the la-
tency of ioct/local is not affected by the number of STREAMs,
whereas the remote latency grows as the QPI becomes con-
gested.

Macro benchmarks. We evaluate how NUDMA traffic af-
fects a co-located programs. To serve as such a victim, we
use a 16-thread parallel PageRank (PR) benchmark [12]),
with 8 threads pinned to each CPU. We measure the effect
of dedicating the remaining six cores on each CPU to in-
stances of (1) memcached (256 KB values) or (2) netperf TCP
Rx benchmarks. Figure 13 shows what effect placing the I/O
workloads in ioct/local vs. remote configurations has on the

running time of the victims as well as on the throughput of
the I/0 workloads. In both cases, PR slows down due to the
co-located workloads. The PR run time is 12% higher when
netperf is remote than when it is ioct/local. For memcached,
the difference is 4%. However, memcached’s throughput suf-
fers more when it shares the QPI with PR, whereas netperf’s
throughput is comparable in both remote and ioct/local con-
figurations.

5.3 IOctopus Steering Switch

To evaluate IOctopus’ handling of thread migration, we run
the TCP Rx netperf workload (64 KB buffers) and migrate the
process to the other socket after approximately 4.5 seconds
using the sched_setaffinity system call. Throughout the
experiment, we sample the throughput of the NIC’s two
PFs every 50 msec. Figure 14 shows the results. When the
NIC acts as an octoNIC, the octoNIC detects process migra-
tion and steers incoming traffic to its CPU. Consequently,
traffic smoothly moves to the PF local to the process. (We
observe no lost or out-of-order packets during the test.) In
contrast, with the NIC’s standard firmware and driver, the
process keeps using the same PF after migrating, resulting
in a throughput drop from ioct/local-level to remote-level.

5.4 IOctopus on NVMe

The IOctopus principles are relevant to any I/O device. Here,
we consider NVMe controllers. The recent NVMe specifica-
tion [72] supports multi-PF controllers that can be used to
implement multi-path I/O systems. Such dual-port NVMe
SSDs are already available on the market [47].

We customize a Dell server back-plane to allow connecting
a dual-port drive to different CPUs and verify that it appears
as two NVMe drives and that its internal storage is accessible
from both. We leave creating an OctoSSD, with the entailed
firmware and software support, to future work. Instead, we
next evaluate the severeness of NUDMA effects on NVMe
workloads, which an OctoSSD would address.

Experimental setup We use a Dell server with a standard
back-plane. The server has two 24-core Intel Xeon Platinum
8160 (Skylake) CPUs, connected via two 10.4 GT/s UPI links.
The machine has 96 GB of memory (6x8 GB DIMMs per
socket). We use four Samsung PM1725a NVMe SSDs [79].

NVMe NUDMA impact We evaluate the sensitivity to the
interconnect load exhibited by an NVMe I/O workload ac-
cessing a remote SSD. For the I/O workload, we use the fio
benchmark [10] (v3.3) to generate NVMe I/O traffic. We run
8 fio threads that each perform asynchronous direct reads,
thereby bypassing the page cache and interacting directly
with the SSD. Each thread continuously submits 32 read re-
quests for 128 KB blocks. The fio jobs interact with an SSD
remote from their CPU. To load the interconnect, we run
instances of the STREAM benchmark that target memory of
the fio node but run on the SSD’s node.
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Figure 13. The effect that co-locating a multithreaded PageRank
(PR) benchmark with multiple memcached or netperf instances has
on PR run time and I/O benchmark throughput.
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Figure 14. Throughput on NIC physical functions when a netperf
TCP Rx process migrates from CPUO0 to CPU 1.

Figure 15 shows the throughput obtained by each bench-
mark, normalized to its throughput when running alone, as
we vary the number of STREAM instances. The throughput
of fio degrades by up to 24% after five instances of STREAM,
as a result of UPI saturation (verified with performance coun-
ters). When the UPI is unloaded, fio’s throughput is limited
by the SSDs. We further validated that fio’s throughput is not
affected by UPI traffic if fio runs on the node local to the SSD
(graphs omitted). The takeaway is that NUDMA also affects
modern high-speed NVMe storage devices. Accessing high-
speed I/O devices over the CPU interconnect is suboptimal,
and can be avoided using IOctopus.
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Figure 12. Network latency benchmark (64 byte messages) co-
located with STREAM benchmarks.
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Figure 15. Throughput of four NVMe devices while an increasing
amount of STREAM instances generate interconnect traffic. In each
configuration throughput is normalized to the results obtained with-
out running the antagonist.

6 Conclusions

IOctopus is an idea whose time has come. It is based (1) on the
observation that NUDMA overheads are inherently differ-
ent than NUMA overheads in that the former are avoidable
whereas the latter are inevitable; and (2) on the idea that
multiple physical PCle functions may serve as internal logi-
cal entities within a single device, in a manner that makes
them transparent both to the external world and to system
software layers higher in the I/O stack than the IOctopus
device driver. By design, IOctopus eliminates all NUDMA
effects and makes all node-device interactions local.
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