
Rowhammering Storage Devices

Tao Zhang
The University of North Carolina

at Chapel Hill
zhtao@cs.unc.edu

Boris Pismenny
Technion – Israel Institute of

Technology
borispi@cs.technion.ac.il

Donald E. Porter
The University of North Carolina

at Chapel Hill
porter@cs.unc.edu

Dan Tsafrir
Technion – Israel Institute of

Technology &
VMware Research

dan@cs.technion.ac.il

Aviad Zuck
aviad.zuck@gmail.com

ABSTRACT

Peripheral devices like SSDs are growing more complex, to

the point they are effectively small computers themselves.

Our position is that this trend creates a new kind of at-

tack vector, where untrusted software could use peripherals

strictly as intended to accomplish unintended goals. To ex-

emplify, we set out to rowhammer the DRAM component

of a simplified SSD firmware, issuing regular I/O requests

that manage to flip bits in a way that triggers sensitive infor-

mation leakage. We conclude that such attacks might soon

be feasible, and we argue that systems need principled ap-

proaches for securing peripherals against them.

ACM Reference Format:

Tao Zhang, Boris Pismenny, Donald E. Porter, Dan Tsafrir, andAviad

Zuck. 2021. Rowhammering Storage Devices. In 13th ACM Work-

shop on Hot Topics in Storage and File Systems(HotStorage ’21), July

27–28, 2021, Virtual, USA. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3465332.3470871

1 INTRODUCTION

A single computer system is increasingly composed of multi-

ple embedded systems, which are smaller, but still resemble

full systems themselves. In the case of SSDs, which serve as

the focus of this study, even a commodity drive is typically

equipped with hundreds of MBs of DRAM and a multicore

ARM chip running nontrivial firmware [2, 6, 24, 58]. This

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

HotStorage ’21, July 27–28,2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8550-3/21/07. . . $15.00

https://doi.org/10.1145/3465332.3470871

complexity is driven by factors such as the ever-increasing

throughput of the peripherals and richer offloading capabil-

ities. Alas, increased complexity implies a greater security

risk. A well-known example highlighting this risk, and our

tendency to ignore it, is the fact that many were surprised to

learn that Intel’s Management Engine (ME) was running a

full Minix OS capable of accessing the local hardware with-

out the end-user’s knowledge [18]; ME exploits shortly fol-

lowed [15, 39]. Another example is the Thunderstrike boot

kit that leverages compromised thunderbolt accessories to

subvert the UEFI boot firmware [22].

We observe the possibility of constructing a new kind of

attack against a peripheral: exclusively using it as “intended”

while exploiting the mere fact that it is a full system in order

to accomplish unlawful goals. In particular, we try to attack

a Flash Translation Layer (FTL) by using its SSD via unprivi-

leged software, supposedly as it was meant to be used: for

reading and writing. Our proposal exploits the fact that SSDs

are sophisticated peripherals and, as such, include DRAM

that might be susceptible to rowhammering [26]. Our attack

triggers standard NVMe commands with the goal of generat-

ing fast enough reads to: (1) flip bits and corrupt FTL data in

SSD-internal DRAM; (2) in a manner that possibly exfiltrates

sensitive information or even gains administrative control

over the system.

To demonstrate the feasibility of this class of attacks, our

work-in-progress study simplifies the target system: we ex-

periment with an emulated FTL rather than an actual one.

Instead of presenting a complete attack, which we do not

have yet, we explain at each step (i) which pieces of the

attack that we envision are missing, (ii) the probability of

success where possible, and (iii) the remaining obstacles for a

motivated attacker to overcome. Despite our simplified setup,

our attack does manage to flip real DRAM bits as described,

and our initial results indicate that we are at the cusp of

unprivileged FTL rowhammering being feasible.

77

HotStorage ’21, July 27–28,2021, Virtual, USA Tao Zhang, Boris Pismenny, Donald E. Porter, Dan Tsafrir, and Aviad Zuck

Our study leaves us with two questions. Firstly, we wonder

if additional “large” system attacks, analogous to rowham-

mering, are applicable to peripherals. Secondly, and more

importantly, we wonder if there exists some principled way

to ensure end-to-end security isolation in a system that is

composed of “smaller” systems—the peripheral devices. In

light of a trend toward self-multiplexing devices, using tech-

nologies such as SRIOV [7, 14, 16], wherein the OS does not

mediate the data path for performance reasons, we expect an

increase in the difficulty and risks of failing to harden devices

against direct access by untrusted software [4, 46, 57].

2 WHY SSDS ARE ROWHAMMER-ABLE

2.1 SSDs and FTLs

Vendors deliver higher-capacity, more capable SSDs, which

can serve millions of I/O requests per second [9, 55, 56].

Flash memories lack support for in-place writes and perform

accesses in large units due to physical limitations of flash

cell technology. For this reason, among others, SSDs and

other flash memory devices typically include an indirection

layer—the FTL— to map logical block addresses (LBAs) to

physical block addresses (PBAs). The FTL is usually imple-

mented in software on top of an embedded system within

the SSD. Similarly to host systems, such embedded systems

are themselves commonly equipped with high-frequency

multicore CPUs to regulate flash chips’ operations, and FTLs

use on-board DRAM modules for storing metadata and data

including logical-to-physical mapping tables, caching fre-

quently accessed data, and incoming writes.

2.2 DRAM and Rowhammering

DRAM realizes high throughput by operating hardware units

in parallel. Modern DRAM modules are composed of multi-

ple chips operating in tandem. Chips are further composed

of multiple banks, which in turn contain multiple two-dimen-

sional arrays of DRAM cells. A line of cells accessed as a unit

in each array constitutes a row, which corresponds to a mem-

ory address. DRAM modules must refresh data periodically

(e.g., every 64ms) to ensure retention.

Kim et al. were the first to demonstrate the possibility of

a “rowhammer attack”, where intentional repeated accesses

to a DRAM row introduce uncorrectable errors to cells in

adjacent rows if the accesses are carefully scheduled between

the chip’s refresh interval [26]. Google’s Project Zero subse-

quently proposed a privilege escalation exploit on systems

with susceptible DRAM modules [45]. Multiple follow-up

studies have since then demonstrated various ways to induce

rowhammering exploits [13, 17, 19, 20, 40, 42, 49, 50]. Kim

et al. provide a recent, detailed overview of the mechanics,

history, and state-of-the-art of rowhammering attacks and

mitigations [25, 36].

Nethammer and Throwhammer first explored the feasi-

bility of launching a rowhammer attack remotely [31, 48].

Instead of rowhammering via direct memory accesses, they

issue network requests to a remote host quickly enough to,

in turn, trigger rapid memory accesses inside the kernel net-

work driver code or memcached internal data structures,

which then eventually causes bitflips in the server’s main

memory. We face a similar situation, where direct access to

victim DRAM is not allowed; what is different in this position

paper is the focus on bitflips within the peripheral device’s

internal DRAM, rather than of main memory of the host

system.

Interestingly, several studies recently demonstrated how

to deliberately induce uncorrectable errors to flash cells [8,

28] and other types of storage [36]; the attack we consider in

this study is different in that it targets the system embedded

in the peripheral rather than the storage media.

2.3 The Risk

It is easy to overlook rowhammering vulnerabilities in pe-

ripherals, since there is a level of indirection and physical

separation between their on-board DRAM chip andmalicious

attackers. In particular, rowhammering attacks require direct

access to victim DRAM modules, which is usually not feasi-

ble in peripherals. Rather, unprivileged attackers are usually

constrained to running host-level, and often user-level, code;

they cannot run code on the peripheral.

We contend, however, that the ever-increasing perfor-

mance of modern SSDs make their memories vulnerable

to rowhammering nevertheless. Specifically, state-of-the-art

rowhammering attacks on modern DRAM modules require

as few as ~50K row accesses per a 64ms refresh interval [17],

i.e., ~780K accesses per second. Consequently, NVMe in-

terfaces easily allow sufficiently high 4KiB-based I/O rates

necessary for a successful rowhammering attack.

We further note that the architecture of modern SSDs

includes several key design choices that make the attacks

more likely to succeed, discussed next.

First, SSD capacity is proportional to its internal DRAM

size, e.g., 1 GiB of SSD capacity requires 1 MiB of DRAM [6].

Modern SSDs (including consumer-level) already support ca-

pacities of up to several Terabytes and thus utilize Gigabytes

of on-board DRAM (Middleboxes and SmartNICs similarly

include Gigabytes of DRAM as well [10, 34]). In addition

to increasing the DRAM size, vendors are concerned with

keeping costs low and power-efficiency high.

The problem is that the risk of rowhammering worsens

when either increasing DRAM size (by making it denser),

or when reducing its power consumption [19, 26]. Indeed,

78

Rowhammering Storage Devices HotStorage ’21, July 27–28,2021, Virtual, USA

LBA 512 … LBA 767LBA 512 … LBA 767LBA 512 LBA 767
LBA 256 … LBA 511LBA 256 … LBA 511LBA 256 LBA 511
LBA 0 … LBA 255row n-2

row n
row n-1

L2P table
(on-board
memory)

FTL

physical blocksSSD

12 … LBALLL12 … LBALLLLL512 LBA
256 … LBA256 … LBA256 LBA
0 … LBA

2 … … 2 ……………………2
6 … 6 …

1 2 3

512 513
host reads
over time

Figure 1: A simple example of a two-sided FTL rowhammering

attack. The onboard memory stores the L2P table. After an initial

sequential write setup, a read workload accesses L2P table entries in

the first and third rows (n-2 and n, called aggressors). This flips bits in

the middle, victim row (n-1), redirecting LBA 256 to a different PBA.

rowhammeringmitigation techniques tend to sacrifice power-

efficiency and performance [36], making them unlikely to

be used in the peripheral settings we consider.

SSD internals are typically unknown and unpublished. But

in our experience, which is based on reverse engineering one

modern SSD from a popular vendor, the internal DRAM is

not cached. We speculate that the FTL’s CPU does not have

caches to lower costs, or that it disables caches to simplify

concurrency, perhaps because the performance benefit of

caching is marginal. Regardless of the reason, no caching

makes the DRAM more prone to rowhammering [26, 31, 43,

50, 51], as caches reduce DRAM access frequency.

In total, this section shows that sufficient bandwidth to

launch a rowhammering attack against SSD-internal DRAM

is either present already in some devices, or will be soon.

3 FTL ROWHAMMERING

This section shows how an unprivileged attacker can use

an SSD as intended and still rowhammer device-side mem-

ory. We first present an overview of the attack primitives

(§3.1), and then how FTL rowhammering can lead to data

corruption, information leak, and privilege escalation (§3.2).

Threat model.We assume attackers have access to an un-

privileged user process with high-speed read/write access to

an SSD whose DRAM modules are vulnerable to rowham-

mering. The SSD is shared with other users (e.g., root), and

the specific SSD model details are known to the attacker.

Attackers with direct access to unmapped/trimmed blocks

may accelerate access rates by avoiding the overheads of

additional, slower, accesses to flash. Such access may require

elevated privileges, such as in VMs sharing an SSD (see §4).

3.1 Attack Primitive

In this attack, we use rowhammering to flip a bit in the

logical to physical (L2P) table. Flipping a bit in this table can

effectively overwrite the mapping of a victim logical block

to a different physical address.

Our proposed attack requires an I/Oworkload on the order

of millions of requests per second. At the firmware level,

these IOs translate to repeated accesses to aggressor rows

that are adjacent in memory to a victim row.

Existing interfaces available to unprivileged users, includ-

ing (O_DIRECT) combined with high-performance asynchro-

nous interfaces, such as Linux AIO or io_uring, can realize

1.5M IOPS on the latest PCIe 4.0 NVMe SSDs [1]. Upcoming

PCIe 5.0 NVMe SSDs are expected to reach over 2M IOPS [5].

The attack is illustrated in Figure 1. First, the attacker

prepares the L2P table by writing data to contiguous LBAs;

the goal is for the SSD firmware to then allocate physical

pages and corresponding L2P table entries in two aggressor

rows (n-2 and n). The attacker then identifies the aggressor

rows using a combination of prior device DRAM structure

knowledge and trial and error. For simplicity, we depict a

row as storing 256 LBAs; in practice, rows are much larger.

Next, the attacker issues a carefully orchestrated read

workload (italic text and dashed lines in Figure 1) that in-

duces rowhammering. Our attack workload repeatedly issues

a read request sequence that alternates between addresses

whose L2P table entries reside in the two aggressor rows. The

result is a series of repeated, frequent, and alternating row ac-

tivations by the firmware, effectively inducing a double-sided

rowhammering attack on the target row. In our demonstra-

tion, we used a double-sided row hammer [45], although a

one-location [19] variant can be simpler to implement on a

device with sufficient throughput.

Finally, the translation in the victim row (n-1) is corrupted

such that it points to a different physical location.

3.2 Attack Scenarios

The FTL Rowhammering vulnerability leads to several secu-

rity sensitive outcomes: (1) data corruption, (2) information

leak, and (3) privilege escalation.

Data corruption. The most straightforward outcome of the

attack is causing random data corruption. The corruption

may lead tomore severe damage if the corruption happens on

critical file system metadata or other SSD-internal metadata,

rendering the file system unmountable or bricking the device.

Information leak. If the attacker can remap an LBA in a file

under the attacker’s control to the PBA hosting a victim’s file

block, the attacker can read that block, bypassing file system

access controls. For instance, an attacker may get a redirec-

tion to a file block containing another user’s SSH private

key. This can potentially also lead to a privilege escalation

if credentials are leaked. This redirection does not provide

attackers with the ability to directly write victim LBAs, as

flash writes are copy-on-write (§2.1). Although most bitflips

will not point to sensitive PBAs, the attacker can repeat this

process until successful.

79

HotStorage ’21, July 27–28,2021, Virtual, USA Tao Zhang, Boris Pismenny, Donald E. Porter, Dan Tsafrir, and Aviad Zuck

Figure 2: On our existing testbed, we need a helper attacker VM to

reach a high-enough access rate to make rowhammering possible (b);

in the future, we foresee that such assistance will be unneeded (a).

Privilege escalation. Attacker bitflips that redirect the vic-

tim’s LBAs to attacker PBAs will grant attackers a write-

something-somewhere primitive: both the location and the

contents of the victim data are not known in advance. This

vulnerability is the hardest to exploit.

Before flipping any bits, the attacker needs to blindly spray

the disk with polyglot blocks [21], i.e., blocks that are valid

as executable code, file data, and file metadata. Replacing a

victim LBA in a sensitive file with a polyglot block can result

in a privilege escalation. For example, rewriting a binary

executable that has setuid permission (e.g. sudo) can result
in executing malicious code as root.

4 CLOUD CASE STUDY

This section demonstrates how, using the SSD only as in-

tended, to turn an FTL bitflip into a privileged information

leak in a VM hosted on cloud server over a shared SSD, and

potentially escalate privilege using the Ext4 file system. Vari-

ous cloud providers advertise over 2 million IOPS storage per-

formance provided to VMs [11, 38]. For a proof-of-concept,

we emulate an SSD in main memory and select an older

system with DRAM comparable to what is in modern SSDs.

There are a number of prerequisite complexities in reverse

engineering an SSD that are time-consuming, orthogonal to

the primary point, but needed to build an end-to-end attack.

We leave the complexities for future work and ignore them

for now.

4.1 Prototype Setup

We set up the testbed for our proof-of-concept attack as

shown in Figure 2 (b). This setup is representative of a multi-

tenant cloud server. We place the victim in a VM, includ-

ing an unprivileged attacker process, which has non-root

user privileges to create, delete, read, and write files but

no direct access to the underlying storage (e.g., VMware’s

Hatchway [52]). And a second, attacker-controlled VM is

co-located on the same server, sharing the same SSD with

year refs type rate (K access/s)
2014 [26] DDR3 2200

DDR3 2500
DDR3 4400

2016 [20, 49] DDR3 672
LPDDR3 4000

2018 [31, 48] DDR3 9400
DDR4 6140

2020 [17, 25] DDR4 800
DDR3 (old) 4800
DDR3 (new) 750
DDR4 (old) 547
DDR4 (new) 313
LPDDR4 (old) 1400
LPDDR4 (new) 150

Table 1: Reported minimal access rate to trigger bitflips.

the victim VM. In a typical cloud hosting service, the attacker

has privileged direct access to the SSD inside their own VM,

via hardware multiplexing techniques like SRIOV [44] or

namespaces [35]. Each VM’s storage space is a partition of

the shared SSD, treated as a block device with its own logical

address space. In each VM, therefore, a block address is only

valid within its partition. However, the underlying FTL and

its mapping table are shared across partitions.

The SSD in the testbed is emulated using Intel’s Storage

Performance Development Kit (SPDK) [23], which uses a

memory-backed block device (ramdisk). The SPDK FTL li-

brary, like most flash-based storage devices [29], stores a

large L2P table in memory as a linear array. Our proposed

attack works on other L2P table layouts, such as a hash

table [6, 37], provided the attacker can learn the structure

offline. Notably, a linear layout is more challenging for a two-

sided rowhammering attack than a hash map, as it is more

challenging to place an aggressor on each side of the victim

row. The SPDK FTL library also uses the emulating host ma-

chine’s cached memory for storing the L2P table. In order to

further mimic the behavior of real-life SSDs (§2.2), we modi-

fied the SPDK FTL library to perform cache invalidation on

every access to L2P entries.

We set up a 1 GiB emulated SSD on a machine with Intel

Core i7-2600 CPU and 16GiBDDR3DRAMmodules (4×4GiB

Samsung DIMMs, organized as 2 channels × 2 DIMMs ×

2 ranks × 8 banks × 215 rows) known to be vulnerable to

rowhammer attacks. The emulation environment doesn’t

support ECC (Error Correction Code) or TRR (Target Row

Refresh). The L2P table size for our SSD is 1MiB [6]. As a

comparison, Samsung PM1733 enterprise SSD is equipped

with up to 16 GiB on-board DDR4 memory (ECC and TRR

support status unknown) [44].

Rowhammering requires a minimal access rate to aggres-

sor rows, which varies with factors such as DDR generation

and memory controller configuration. As shown in Table 1,

common minimal rates on DDR3 range from 2 million to

9 million accesses per second, although a bitflip has been

80

Rowhammering Storage Devices HotStorage ’21, July 27–28,2021, Virtual, USA

………
…

inode
………
…

indirect blk
(real metadata) ………

…

sprayed data blk
(fake metadata)

secret data blk

reroute caused by bitflipext4

Figure 3: Example of an exploit on Ext4 indirect block.

observed at rates as low as 700K per second [17, 20, 26, 31, 48,

49]. The smaller technology node in newer DRAM modules

makes them even more vulnerable to disturbance errors [25].

Because our L2P table is small relative to system memory

in our testbed, we place the table in a physical memory region

which we have confirmed is vulnerable to a rowhammer

attack. Our testbed DRAM shows bitflips from direct accesses

at a rate of 3M per second; because SPDK adds other accesses,

we must issue SPDK-level accesses at a higher rate (about

7M/s). To emulate this, we manually amplified each L2P row

activation (5 hammers per I/O request) in SPDK. Note that

with DRAMmodules that aremore vulnerable to rowhammer

attack, the rate amplification can be reduced or even dropped

completely.

We choose the setup in Figure 2 (b) because our main

system is relatively slow, so that direct access from user

space is not sufficiently fast for the attack. Given a system

that provides fast enough unprivileged direct access to the

SSD, the attacker VM can be dropped and a simpler setup,

as shown in Figure 2 (a), can be used to launch the attack.

4.2 Attacking the Ext4 File System

For concreteness, we attack the ext4 [33] file system. By de-

fault, ext4 inodes index file blocks using an extent tree. To

prevent metadata corruptions, the extent tree is protected

by CRC-32C checksum. However, for backward compati-

bility with previous versions, ext4 also has an optional di-

rect/indirect block addressing mechanism used to map in-file

blocks to filesystem blocks. Critically, indirect blocks are not

verified against any checksum. Users may also select the

direct/indirect block mechanism on files they have write

access to.

In a nutshell, our attack redirects an FTL mapping entry

from a victim inode to a victim’s indirect block to an attacker-

provided indirect block. The attacker’s indirect block points

to LBAs containing privileged content on the victim VM. A

successful attack will modify an unprivileged file, owned

by the attacker process in the victim VM, to point to the

contents of a privileged file.

Our attack follows these steps:

Filesystem spraying stage. The attacker process inside

the victim VM first sprays the victim filesystem with files

configured to use indirect blocks. Each file includes a single

indirect block pointing to a lone data block. The attacker

creates each file with a hole of 12 blocks (to avoid storing

direct data blocks) and then stores a single data blockmapped

using an indirect block. The data blocks in turn contain a

maliciously formed indirect block pointing at target LBAs of

potentially privileged content (Figure 3).

This spraying is needed to increase the probability of a

successful attack. The locations of bitflips at the L2P table

are unpredictable, so the more malicious indirect blocks on

the disk, the higher the probability of success.

To further increase the possibility of a successful exploit,

the attacker’s VM sprays its own partition with blocks that

contain similar malicious indirect blocks.

Hammering stage. The attacker VM launches a double-

sided rowhammering attack on the L2P table. We assume

that the attacker can map out potential aggressor and victim

rows in a given SSD model offline; the row-level adjacency

should be consistent among instances of the samemodel [40].

The attacker must also identify which set of rows are actually

rowhammerable (the attacker could randomly pick rows to

rowhammer, but the success rate may be unacceptably low);

rowhammerability is determined primarily by variation in

the manufacturing process and must be tested online and on

the specific device.

The remaining challenge, then is getting a victim row

between two aggressor rows, when the L2P table is a simple

physical partition. We can run a single-sided rowhammering

on the boundary area of attacker and victim partition, but

single-sided attacks flip fewer bits in practice.

Fortunately, modern memory controllers also use a map-

ping function to spread DRAM accesses across different hard-

ware units [12, 40, 47, 53, 54]. By reverse engineering or read-

ing documentation, we can also identify a contiguous run of

three rows (vulnerable to a double-sided rowhammer) that

do not have monotonically increasing physical addresses.

In our example system, we were able to identify 32 sets of

three vulnerable rows that could potentially place the victim

row in a separate memory partition from the aggressors. We

note that 32 sets of vulnerable rows is on the lower end;

other DRAM mapping functions or L2P structures (e.g., hash

tables) could generate many more vulnerable pairs.

Scan for bitflip. After a certain period (e.g., 5 minutes) of

hammering, the attacker process in the victim VM iterates

over files created in the spraying stage to detect content

modifications due to bitflips in the L2P table (see Figure 3).

A successful bitflip causes an unprivileged file’s inode to

point at a maliciously formed indirect block. The attacker

can then dump potentially-privileged content and repeat the

process as necessary by editing the malicious indirect block

to map other LBAs. If no bitflips are detected the attacker

can re-spray the system with new files, forcing the FTL to

81

HotStorage ’21, July 27–28,2021, Virtual, USA Tao Zhang, Boris Pismenny, Donald E. Porter, Dan Tsafrir, and Aviad Zuck

re-shuffle all address mappings to reside in new memory

rows.

By repeating these steps enough times, the attacker can

eventually dump the content of the entire victim partition

even as an unprivileged user. The resulting content can also

be used for privilege escalation, e.g., by reading the private

key file of an administrator user.

The time needed to flip single bit and control a victim

indirect block can varywidely. On our testbed this took about

two hours, which is longer than expected in practice because

SPDK limits file spraying to 5% of the victim partition due

to technical issues in the FTL library.

4.3 Probability of Success

We estimate the probability that a given bitflip will be useful

to the attacker following one cycle of the attack described in

§4.2. We assume the following parameters: 𝑳𝑩 and 𝑷𝑩 repre-

sent the total number of logical and physical addresses of the

SSD, respectively; the number of blocks related to the victim

and attacker partitions are 𝑪𝒗 and 𝑪𝒂 , respectively (where

𝐶𝑣+𝐶𝑎 ≤ LB); the overall number of blocks related to sprayed

files that attacker can create inside the victim and attacker

partitions is 𝑭𝒗 and 𝑭𝒂 , respectively. Then the number of
sprayed indirect blocks is 𝐹𝑣/2, and total number of mali-
cious data block on the device is 𝐹𝑎 + 𝐹𝑣/2.
The probability that a bitflip happens on an LBA belonging

to a sprayed victim partition indirect block is:
𝐹𝑣/2
𝐶𝑣

. The proba-

bility that the bitflipped L2P entry is redirected to a malicious

block is:
𝐹𝑣/2+𝐹𝑎

PB . Consequently, the combined probability rate

of getting a useful bitflip is
𝐹𝑣/2
𝐶𝑣

·
𝐹𝑣/2+𝐹𝑎

PB = 𝐹𝑣 (𝐹𝑣+2𝐹𝑎)
4𝐶𝑣 ·PB

.

To illustrate, if the attacker and victim partitions equally

share the SSD (i.e., 𝐶𝑎 = 𝐶𝑣 = PB/2 = LB/2). Conservatively

assuming the attacker user can only fill 25% of victim par-

tition (i.e., 𝐹𝑣 = 1/4𝐶𝑣), and 100% of attacker partition (i.e.,

𝐹𝑎 = 𝐶𝑎), the resulting success rate is 7% for a single attack

cycle. Simply repeating the attack cycle for 10 times brings

the chances of success to more than 50%.

5 MITIGATIONS

A number of proposed techniques can protect DRAM against

rowhammering [3, 25, 36, 50]. Somemethods, such as strength-

ening ECC, may also protect against FTL rowhammering.

Othersmay not be applicable. For example, increasing DRAM

refresh rate reduces the window of vulnerability, but is con-

sidered prohibitively power-hungry even in host systems.

As discussed above, SSDs could enable caches on the inter-

nal CPUs. Although there are already attacks that make use

of cache eviction policies and successfully trigger bitflips in

DRAM [13, 20], these attacks are not directly applicable to

the memory accesses in SSD FTLs. We speculate that, with

more details about FTL memory access behavior, an attack

could bypass the FTL-side cache and disturb FTL memory.

One can mitigate vulnerabilities in the SSD itself. Physi-

cally isolating memory and flash hardware units across parti-

tion boundaries may protect against attacks on shared SSDs

(see §4), but potentially increases manufacturing costs. Rate-

limiting user IOs below the rowhammering access rate can

also remove this potential attack, but it is at odds with the

overall performance goals of NVMe. One could also random-

ize the FTL-internal structures, thwarting the assumption

that the attacker could gain this knowledge offline; this is

most easily accomplished with a hashed L2P table that uses

a device-specific key. Finally, block data integrity [41] and

encryption [32] algorithms protect data integrity and confi-

dentiality from misdirected writes by relying on the block’s

LBA to digest and encrypt block data.

Alternatively, one can mitigate vulnerabilities in software

by encrypting data using per-tenant keys to protect data con-

fidentiality, or by enforcing extent tree addressing to exclude

indirect file data block overwrites. The checksum protection

on the extent tree should make it much more difficult to

exploit, but the attacker can still induce data corruptions as

described in §3.2.

6 CONCLUSIONS

This position paper demonstrates a new kind of attack on

a peripheral, using only user-level requests as intended. Al-

though an end-to-end attack is not yet demonstrated, we

believe the remaining work will yield to effort. We are left

with an open question about whether there is a more princi-

pled solution, and what other high-profile attacks, such as

Spectre or Meltdown [27, 30], may work on these peripherals.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Peter

Desnoyers, for their insightful comments on earlier drafts

of the work. We also thank Philipp Gühring, Carlo Meijer,

and Eyal Ronen for their support in earlier iterations of this

project. This research was supported in part by a grant from

the United States-Israel Binational Science Foundation (BSF),

Jerusalem, Israel, grant # 2017702; the United States National

Science Foundation (NSF) grant #CNS-1816263, VMware, the

Technion Hiroshi Fujiwara cyber security research center,

and the Israel cyber directorate.

REFERENCES
[1] Adam Armstrong. KIOXIA CM6 PCIe 4.0 SSD Review. https://www.

storagereview.com/review/kioxia-cm6-pcie-4-0-ssd-review, 2020. Ac-

cessed: Jun 2021.

82

Rowhammering Storage Devices HotStorage ’21, July 27–28,2021, Virtual, USA

[2] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis,

Mark Manasse, and Rina Panigrahy. Design tradeoffs for SSD per-

formance. In USENIX Annual Technical Conference (ATC), pages 57–

70, 2008. https://www.usenix.org/legacy/events/usenix08/tech/full_

papers/agrawal/agrawal.pdf.

[3] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetu-

parna Das, Matthew Hicks, Yossi Oren, and Todd Austin. Anvil:

Software-based protection against next-generation rowhammer at-

tacks. In ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), pages 743–

755, 2016. https://doi.org/10.1145/2872362.2872390.

[4] Adam Bates, Benjamin Mood, Joe Pletcher, Hannah Pruse, Masoud

Valafar, and Kevin Butler. On detecting co-resident cloud instances

using network flow watermarking techniques. International Journal

of Information Security, 13(2):171–189, 2014. https://doi.org/10.1007/

s10207-013-0210-0.

[5] Billy Tallis. Marvell announces first pcie 5.0 nvme ssd controllers: Up to

14 gb/s. https://www.anandtech.com/show/16703/marvell-announces-

first-pcie-50-nvme-ssd-controllers, 2021. Accessed: Jun 2021.

[6] Andrew Birrell, Michael Isard, Chuck Thacker, and Ted Wobber. A

design for high-performance flash disks. ACM SIGOPS Operating

Systems Review, 41(2):88–93, 2007. https://doi.org/10.1145/1243418.

1243429.

[7] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. Hardware and Software

Support for Virtualization. Morgan & Claypool Publishers, 2017. https:

//doi.org/10.2200/S00754ED1V01Y201701CAC038.

[8] Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F

Haratsch. Vulnerabilities in MLC NAND flash memory programming:

Experimental analysis, exploits, and mitigation techniques. In IEEE

International Symposium on High-Performance Computer Architecture

(HPCA), pages 49–60, 2017. https://doi.org/10.1109/HPCA.2017.61.

[9] Wonil Choi, Jie Zhang, Shuwen Gao, Jaesoo Lee, Myoungsoo Jung, and

Mahmut Kandemir. An in-depth study of next generation interface

for emerging non-volatile memories. In 5th Non-Volatile Memory

Systems and Applications Symposium (NVMSA), pages 1–6, 2016. https:

//doi.org/10.1109/NVMSA.2016.7547177.

[10] Cisco. Cisco ASR 1000 Series Router Specifications.

https://www.cisco.com/c/en/us/td/docs/routers/asr1000/install/

guide/asr1routers/asr-1000-series-hig/asr-hig-spfy.pdf, 2008.

Accessed: Dec 2020.

[11] Google Cloud. Block storage performance. https://cloud.google.com/

compute/docs/disks/performance, 2021. Accessed: Apr 2021.

[12] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu,

Alec Wolman, and Onur Mutlu. Are we susceptible to rowhammer?

an end-to-end methodology for cloud providers. In IEEE Symposium

on Security and Privacy (S&P). IEEE, May 2020. https://doi.org/10.1109/

SP40000.2020.00085.

[13] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cris-

tiano Giuffrida, and Kaveh Razavi. SMASH: Synchronized Many-sided

Rowhammer Attacks From JavaScript. In USENIX Sec, August 2021.

[14] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silber-

stein. NICA: An infrastructure for inline acceleration of network appli-

cations. In USENIX Annual Technical Conference (ATC), pages 345–362,

2019. https://www.usenix.org/conference/atc19/presentation/eran.

[15] Mark Ermolov and Maxim Goryachy. How to hack a turned-off com-

puter, or running unsigned code inintel management engine. BlackHat,

https://papers.put.as/papers/firmware/2017/eu-17-Goryachy-How-

To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-

Intel-Management-Engine.pdf, 2017. Accessed: Jan 2021.

[16] Daniel Firestone, Andrew Putnam, SambhramaMundkur, Derek Chiou,

Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,

Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh

Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen

Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,

Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth

Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug

Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. Azure

accelerated networking: Smartnics in the public cloud. In USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI), pages

51–66, 2018. https://www.usenix.org/conference/nsdi18/presentation/

firestone.

[17] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van Der Veen,

Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.

TRRespass: Exploiting the many sides of target row refresh. In

IEEE Symposium on Security and Privacy (S&P), pages 747–762, 2020.

https://doi.org/10.1109/SP40000.2020.00090.

[18] Matthew Garrett. Intel’s remote AMT vulnerablity. https://mjg59.

dreamwidth.org/48429.html, 2017. Accessed: Jan 2021.

[19] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas

Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. An-

other flip in the wall of rowhammer defenses. In IEEE Symposium on

Security and Privacy (S&P), pages 245–261, 2018. https://doi.org/10.

1109/SP.2018.00031.

[20] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-

mer.js: A remote software-induced fault attack in javascript. In Inter-

national conference on detection of intrusions and malware, and vulner-

ability assessment, pages 300–321. Springer, 2016. https://doi.org/10.

1007/978-3-319-40667-1_15.

[21] H.L.J.Laloge. Polyglot database. https://github.com/Polydet/polyglot-

database, 2018.

[22] Trammell Hudson and Larry Rudolph. Thunderstrike: EFI firmware

bootkits for Apple MacBooks. In ACM International Systems and

Storage Conference (SYSTOR), pages 1–10, 2015. https://doi.org/10.

1145/2757667.2757673.

[23] Intel. Storage Performance Development Kit (SPDK). https://spdk.io,

2015. Accessed: Jan 2021.

[24] Hyukjoong Kim, Dongkun Shin, Yun Ho Jeong, and Kyung Ho Kim.

SHRD: Improving spatial locality in flash storage accesses by sequen-

tializing in host and randomizing in device. In USENIX Conference on

File and Storage Technologies (FAST), pages 271–284, 2017. https://www.

usenix.org/conference/fast17/technical-sessions/presentation/kim.

[25] Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, Ro-

knoddin Azizi, Lois Orosa, and Onur Mutlu. Revisiting rowham-

mer: An experimental analysis of modern dram devices and mit-

igation techniques. In 2020 ACM/IEEE 47th Annual International

Symposium on Computer Architecture (ISCA), pages 638–651, 2020.

https://doi.org/10.1109/ISCA45697.2020.00059.

[26] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,

Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-

ping bits in memory without accessing them: An experimental study

of dram disturbance errors. In ACM International Symposium on Com-

puter Architecture (ISCA), pages 361–372, 2014. https://doi.org/10.1145/

2678373.2665726.

[27] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,

Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas

Prescher, et al. Spectre attacks: Exploiting speculative execution. In

IEEE Symposium on Security and Privacy (S&P), pages 1–19, 2019. https:

//doi.org/10.1109/SP.2019.00002.

[28] Anil Kurmus, Nikolas Ioannou, Matthias Neugschwandtner, Niko-

laos Papandreou, and Thomas Parnell. From random block cor-

ruption to privilege escalation: A filesystem attack vector for

rowhammer-like attacks. In USENIX Workshop on Offensive Tech-

nologies (WOOT), 2017. https://www.usenix.org/conference/woot17/

workshop-program/presentation/kurmus.

83

HotStorage ’21, July 27–28,2021, Virtual, USA Tao Zhang, Boris Pismenny, Donald E. Porter, Dan Tsafrir, and Aviad Zuck

[29] Kim Kwonyoup and Lee Seungjoon. A new hope: The one

last chance to save your ssd data. Black Hat USA, 2020,

2020. https://i.blackhat.com/eu-20/Wednesday/eu-20-Lee-A-New-

Hope-The-One-Last-Chance-to-Save-Your-SSD-Data.pdf.

[30] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner

Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel

Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading ker-

nel memory from user space. In USENIX Security Symposium, pages

973–990, 2018. https://www.usenix.org/conference/usenixsecurity18/

presentation/lipp.

[31] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster,

Misiker Tadesse Aga, Clémentine Maurice, and Daniel Gruss. Netham-

mer: Inducing rowhammer faults through network requests. In IEEE

European Symposium on Security and Privacy Workshops (EuroS&PW),

pages 710–719, 2020. https://doi.org/10.1109/EuroSPW51379.2020.

00102.

[32] Luther Martin. XTS: A mode of AES for encrypting hard disks. IEEE

Security & Privacy, 8(3):68–69, 2010. https://doi.org/10.1109/MSP.2010.

111.

[33] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas

Dilger, Alex Tomas, and Laurent Vivier. The new ext4 filesystem:

current status and future plans. In Proceedings of the Linux symposium,

volume 2, pages 21–33, 2007. https://www.kernel.org/doc/ols/2007/

ols2007v2-pages-21-34.pdf.

[34] Mellanox. Bluefield SmartNIC for Ethernet. https://www.mellanox.

com/sites/default/files/related-docs/prod_adapter_cards/PB_

BlueField_Smart_NIC.pdf, 2019. Accessed: Dec 2020.

[35] Micron. Micron 9300 NVMe SSD. https://media-www.micron.com/-

/media/client/global/documents/products/product-flyer/9300_ssd_

product_brief.pdf?la=en&rev=b6908d03082d4fd7b022a2f40d1b731e,

2020. Accessed: Dec 2020.

[36] Onur Mutlu and Jeremie S. Kim. Rowhammer: A retrospective, 2019.

http://arxiv.org/abs/1904.09724. Accessed: Dec 2020.

[37] Fan Ni, Chunyi Liu, Yang Wang, Chengzhong Xu, Xiao Zhang, and

Song Jiang. A hash-based space-efficient page-level ftl for large-

capacity ssds. In 2017 International Conference on Networking, Ar-

chitecture, and Storage (NAS), pages 1–6, 2017. https://doi.org/10.1109/

NAS.2017.8026838.

[38] Oracle. Oracle cloud infrastructure–cloud storage. https://www.oracle.

com/cloud/storage/, 2021. Accessed: Apr 2021.

[39] ID Pankov, AS Konoplev, and A Yu Chernov. Analysis of the security

of uefi bios embedded software in modern intel-based computers.

Automatic Control and Computer Sciences, 53(8):865–869, 2019. https:

//doi.org/10.3103/S0146411619080224.

[40] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,

and Stefan Mangard. DRAMA: Exploiting DRAM addressing for

cross-cpu attacks. In 25th USENIX Security Symposium (USENIX Se-

curity 16), pages 565–581, 2016. https://www.usenix.org/conference/

usenixsecurity16/technical-sessions/presentation/pessl.

[41] Martin K Petersen. T10 data integrity feature (logical block guard-

ing). https://www.usenix.org/legacy/event/lsf07/tech/petersen.pdf,

2007. Accessed: Dec 2020.

[42] Salman Qazi, Yoongu Kim, Nicolas Boichat, Eric Shiu, and Mat-

tias Nissler. Introducing half-double: New hammering technique

for dram rowhammer bug. https://security.googleblog.com/2021/05/

introducing-half-double-new-hammering.html, May 2021.

[43] Rui Qiao and Mark Seaborn. A new approach for rowhammer attacks.

In IEEE International Symposium on Hardware Oriented Security and

Trust (HOST), pages 161–166, 2016. https://doi.org/10.1109/HST.2016.

7495576.

[44] Samsung. Samsung PM1733 NVMe SSD. https://

samsungsemiconductor-us.com/labs/pdfs/PM1733_U2_Product_

Brief.pdf, 2020. Accessed: Dec 2020.

[45] Mark Seaborn and Thomas Dullien. Exploiting the DRAM rowham-

mer bug to gain kernel privileges. http://googleprojectzero.blogspot.

com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html, 2015.

Accessed: Jan 2021.

[46] Igor Smolyar, Muli Ben-Yehuda, and Dan Tsafrir. Securing self-

virtualizing Ethernet devices. In USENIX Security Symposium, pages

335–350, 2015. https://www.usenix.org/conference/usenixsecurity15/

technical-sessions/presentation/smolyar.

[47] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. De-

feating software mitigations against rowhammer: a surgical precision

hammer. In International Symposium on Research in Attacks, Intrusions,

and Defenses, pages 47–66, 2018. https://doi.org/10.1007/978-3-030-

00470-5_3.

[48] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cris-

tiano Giuffrida, Herbert Bos, and Kaveh Razavi. Throwhammer:

Rowhammer attacks over the network and defenses. In USENIX

Annual Technical Conference (ATC), pages 213–226, 2018. https:

//www.usenix.org/conference/atc18/presentation/tatar.

[49] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel

Gruss, Clementine Maurice, Giovanni Vigna, Herbert Bos, Kaveh

Razavi, and Cristiano Giuffrida. Drammer: Deterministic rowham-

mer attacks on mobile platforms. In ACM Conference on Computer

and Communications Security (CCS), pages 1675–1689, 2016. https:

//doi.org/10.1145/2976749.2978406.

[50] Victor van der Veen, Martina Lindorfer, Yanick Fratantonio, Harikrish-

nan Padmanabha Pillai, Giovanni Vigna, Christopher Kruegel, Herbert

Bos, and Kaveh Razavi. GuardION: Practical mitigation of DMA-based

rowhammer attacks on ARM. In International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment (AHES), pages

92–113, 2018. https://doi.org/10.1007/978-3-319-93411-2_5.

[51] Pepe Vila, Boris Köpf, and José F Morales. Theory and practice of

finding eviction sets. In IEEE Symposium on Security and Privacy (S&P),

pages 39–54, 2019. https://doi.org/10.1109/SP.2019.00042.

[52] VMware. Project Hatchway: Persistent Storage for Cloud-Native Ap-

plications. https://blogs.vmware.com/cloudnative/2017/09/06/project-

hatchway-persistent-storage-cloud-native-applications/, 2017. Ac-

cessed: Jan 2021.

[53] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya Nepal.

Dramdig: A knowledge-assisted tool to uncover dram address map-

ping. In ACM/IEEE Design Automation Conference (DAC), pages 1–6,

2020. https://doi.org/10.1109/DAC18072.2020.9218599.

[54] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.

One bit flips, one cloud flops: Cross-vm row hammer attacks and

privilege escalation. In USENIX Security Symposium, pages 19–35,

2016. https://www.usenix.org/conference/usenixsecurity16/technical-

sessions/presentation/xiao.

[55] Jie Zhang, Miryeong Kwon, Michael Swift, and Myoungsoo Jung.

Manycore-based scalable ssd architecture towards one and more

million IOPS. In Annual Non-Volatile Memories Workshop (NVMW),

2021. http://nvmw.ucsd.edu/nvmw2021-program/nvmw2021-data/

nvmw2021-final27.pdf.

[56] Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan Tsafrir. Apps

can quickly destroy your mobile’s flash: why they don’t, and how to

keep it that way. In ACM International Conference on Mobile Systems,

Applications, and Services (MobiSys), pages 207–221, 2019. https://doi.

org/10.1145/3307334.3326108.

[57] Zhe Zhou, Zhou Li, and Kehuan Zhang. All your VMs are disconnected:

Attacking hardware virtualized network. In ACM Conference on Data

and Application Security and Privacy (COADSPY), 2017. https://doi.org/

10.1145/3029806.3029810.

84

Rowhammering Storage Devices HotStorage ’21, July 27–28,2021, Virtual, USA

[58] Aviad Zuck, Philipp Gühring, Tao Zhang, Donald E Porter, and Dan

Tsafrir. Why and how to increase ssd performance transparency. In

USENIX Workshop on Hot Topics in Operating Systems (HOTOS), 2019.

https://doi.org/10.1145/3317550.3321430.

85

