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Abstract
CPUs parallelize packet processing across cores via per-core
receive (Rx) rings, which are typically sized to absorb bursts
with ≥1Ki entries by default. The combined I/O working
set (packet buffers pointed to by all Rx rings) easily exceeds
the LLC capacity, thus degrading performance due to high
memory bandwidth pressure. Recent work has reduced the
I/O working set size by sharing Rx rings among cores with the
“shRing” system. But this approach suffers from a bottleneck
under imbalanced loads, which are common.

We contend that the bottleneck stems from an unnecessary
entanglement of two orthogonal producer-consumer struc-
tures: (1) memory allocation, where the core produces empty
buffers that the NIC consumes to store packets; and (2) packet
delivery, where the NIC produces incoming packets that the
core consumes. We propose rxBisect, a new CPU-NIC inter-
face that decouples these structures. RxBisect replaces each
Rx ring with two separate rings corresponding to the two
structures, allowing memory allocation to be performed inde-
pendently of packet reception. RxBisect can thus pass empty
buffers efficiently between cores upon imbalance, thereby
eliminating the aforementioned bottleneck. We implement
rxBisect with software emulation and find that it improves
throughput by up to 20% and 37% relative to the state-of-the-
art (shRing) and state-of-the-practice (per-core Rx rings).

1 Introduction
With Ethernet speeds growing to hundreds of gigabits per
second (Gbps), the performance of network-intensive appli-
cations depends on the effectiveness of technologies such
as direct data I/O (DDIO) [15]. DDIO enables the net-
work interface card (NIC) to perform direct memory ac-
cesses (DMAs) that read from and write to the last-level
cache (LLC) instead of main memory. Software can thus ac-
cess packets more quickly and conserve main memory band-
width [1,13,18,23,51,54,64,65,74,79], enabling applications
to achieve higher throughput and lower latency.

The effectiveness of DDIO depends on the size of the I/O
working set, which consists of the memory regions DMAed
by the NIC for packet exchange [66]. If the I/O working set
exceeds the LLC capacity, newly arriving packets written by
the NIC can evict from the LLC other packets that have not
yet been processed [22, 79]. As a result, CPU accesses to
packet data slow down because they are served from main
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memory, which can then become a bottleneck resource [46,
54], degrading both throughput and latency.

The I/O working set is determined by the CPU-NIC packet
exchange interface (§2), which consists of two types of
producer-consumer queues: one for transmission (Tx) and
another for reception (Rx). These queues are circular arrays,
known as “rings,” whose entries are architected descriptor
structures that point to packet buffers. To support high data
rates, NICs distribute incoming traffic across multiple per-
core Rx rings, enabling systems to sustain ≥ 100 Gbps rates
using multicore parallelism [25, 27, 53, 54, 59, 67, 78].

Each Rx ring is initially filled by software with empty
1500 B buffers, matching the network’s maximum transmis-
sion unit (MTU). As packets arrive, the NIC consumes empty
buffers in cyclic order by populating them with incoming
packets. Software then consumes the full buffers in the same
cyclic order, removing each for processing and immediately
replacing it with an empty buffer.

This producer-consumer NIC-CPU interaction implies that
every empty buffer in an Rx ring must be used before any can
be re-used. Consequently, the I/O working set size is at least
N ×R×1500B, where N is the number of rings and R is the
size of each ring. The default ring size for ≥100 Gbps NICs is
R = 1,024 entries [11,16,47,55,73,73,80], required to absorb
packet bursts caused by increasing network speeds [2, 40, 56].
Since CPUs typically provide less than R×1500B ≈ 1.5 MiB
of LLC capacity per core, multicore network processing can
easily exceed the overall LLC capacity.

Keeping the I/O working set in the LLC thus requires re-
ducing the number or size of Rx rings. Reducing size means
rings might be unable to absorb packet bursts, which degrades
the throughput a single core can sustain without incurring
packet loss [66, 83]. We therefore rule this alternative out.

The other alternative is more practical: reducing the num-
ber of Rx rings by sharing a single ring among two or more
cores, as we proposed in the shRing system [66]. The prob-
lem is that shRing requires software synchronization, which
adds overhead to packet processing. Moreover, shRing can
be effective only when packet processing is roughly computa-
tionally balanced across the sharing cores. But if some cores
are consistently overloaded while others are not, queueing
theory dictates that packet loss is inevitable: overloaded cores
impede packet delivery to underloaded cores by monopoliz-
ing the shared Rx entries. Accordingly, shRing disables itself
upon detecting such situations, falling back on default-size
private rings, which can exceed the LLC capacity.



structure producer consumer elements
memory allocation CPU core NIC empty buffers
packet reception NIC CPU core full buffers

Table 1: The canonical Rx interface between the NIC and the CPU
entangles two producer-consumer structures in one ring.

In §3, we explain and demonstrate the I/O working set prob-
lem and show that real-world imbalance capable of nullifying
the potential benefits of shRing is widespread—although it
has been referred to as “pathological” [66].

Our new insight is that the root cause of the problem—the
inability to shrink or share Rx rings without the aforemen-
tioned undesirable side effects—is the canonical Rx inter-
face, which unnecessarily entangles two orthogonal producer-
consumer structures: one for allocating empty buffers, with
the CPU core acting as producer and the NIC as consumer;
and another for delivering full buffers (housing newly arriving
packets), where the roles are reversed as summarized in Ta-
ble 1. Due to this entanglement, we cannot simply reduce the
number of buffers allocated per core without also impairing
the core’s ability to absorb bursts. Nor can we share allocated
buffers among cores without simultaneously forcing them to
share (and compete over) packet reception capacity.

To solve this problem, we propose rxBisect, which re-
designs the Rx NIC interface to disentangle packet allocation
from reception (§4). RxBisect splits the traditional circular
Rx array into separate allocation (Ax) and bisected reception
(Bx) rings, which are independent and may have different
sizes. RxBisect supports cross-core receive buffer sharing:
the NIC may consume a buffer from any Ax ring to store
an incoming packet, regardless of the destination Bx ring, as
long as both rings belong to the same software entity and re-
side on the same NUMA node. To replenish allocated buffers,
the NIC posts a notification to a core’s Bx ring whenever it
consumes a buffer from that core’s Ax ring. Commonly, the
Ax and Bx rings of a newly arriving packet belong to the same
core, so this notification is included in the new packet’s Bx
descriptor. When processing this notification, the core places
a fresh empty buffer into its Ax ring.

With rxBisect, each core can employ a 1 Ki Bx ring, which
may be empty or full if, respectively, none or most of the
incoming traffic is directed at that core. Allocation rings can
then be smaller, reducing the overall I/O working set and
achieving the desired effect. Fewer Ax buffers are needed be-
cause rxBisect implements cross-core buffer sharing, quickly
moving Ax buffers between cores and using them to popu-
late Bx rings as needed, even when a buffer’s source Ax and
destination Bx are associated with different cores. Notably,
rxBisect frees software from synchronization overheads asso-
ciated with cross-core buffer sharing (which shRing suffers
from), offloading them to the NIC.

We prototype rxBisect using emulation on top of a software
NIC framework we developed, which also emulates other NIC

models: the private per-core ring baseline and shRing. These
allow us to compare the performance of emulated and non-
emulated versions and assess the emulation fidelity (§5). We
show that emulated performance is similar to real performance
or worse, reducing throughput by up to 12% and increasing
latency by up to 94%. We therefore gain confidence in experi-
mental results that compare emulated rxBisect performance
to non-emulated baseline and shRing performance and find
rxBisect to be preferable.

Our evaluation setup employs two 100 Gbps NICs. We
show that rxBisect improves throughput by up to 37% and
reduces packet latency by up to 11x compared to the default-
sized per-core Rx baseline. (The significant latency gains
occur when rxBisect sustains line-rate whereas the baseline is
unable to.) Under load imbalance, rxBisect improves through-
put by up to 20% relative to an idealized shRing (§6).

2 The NIC-CPU Interface Today
Software interacts with NICs via per-core logically cyclic
arrays called receive (Rx) and transmit (Tx) rings. We focus
on Rx rings as they dictate the I/O working set (see §3). The
NIC spreads incoming traffic among cores using receive side
scaling (RSS [59]). With RSS, when a packet arrives from the
network, the NIC selects its destination Rx ring according to
a hash computed over packet header fields.

Rx rings combine two producer-consumer functionali-
ties: (1) software producing empty buffers for the NIC to
consume by storing incoming packets (memory allocation)
and (2) the NIC producing incoming packets for software to
consume (packet reception).

Software configures the Rx ring size and allocates it in
main memory, prepopulating ring entries, called descriptors,
with pointers to MTU-sized buffers. When a packet arrives,
the NIC writes it to the buffer pointed to by the head (“next
empty”) descriptor index and advances the head unless it
reaches the tail (“next full”) descriptor index. Software pro-
cesses packets in order, swapping the buffer pointed to by
the tail (with the received packet) for a new empty buffer and
incrementing the tail unless it reaches the head.

Software informs the NIC about new free buffers (ring tail
advances) by means of an MMIO write to a NIC register,
known as “ringing a doorbell.” In contrast, software does not
poll the ring head to detect new packets, as such polling would
result in cache line bounces between the NIC and the CPU (if
the head were stored in memory) or expensive MMIO reads
(if it were stored in a NIC register). Instead, the NIC informs
software of produced packets by means of a cache-friendly
memory-based protocol, described next.

Completion Rings Modern NICs notify software of deliv-
ered packets via per-core in-memory completion ring (CR)
structures [24, 35, 57]. (Intel NICs have used CRs since
2022 [30].) CRs, like descriptor rings, are circular buffers.
Each CR is associated with one or more descriptor rings. CR



entries indicate which Rx ring descriptors are ready for soft-
ware processing by specifying their ring and index.

To optimize cache coherence traffic, the NIC exclusively
writes CR entries while software only reads them, coordinat-
ing access via a sense reverse mechanism [60]. Both the NIC
and software maintain a “generation” bit that flips on every
pass through the ring. Each CR entry has a “done” bit that the
NIC fills with its “generation” bit when a new packet arrives.
Software polls the head CR entry, comparing its “done” bit
with its internal “generation” bit to detect new packets.

Figure 1 depicts packet reception with CRs. Initially (Fig-
ure 1a), three packets arrive for a core whose Rx ring and CR
are empty. Packet delivery (Figure 1b) consists of (1) the NIC
using RSS to find the Rx ring and CR matching the packet;
(2) writing the packet to an Rx descriptor, and (3) writing a
CR entry, indicating the index of the Rx descriptor that holds
the packet. These entries have “done” set to 1, because the
CR’s generation is 1. Packet processing (Figure 1c) occurs
when the core, polling the head CR entry, notices its “done”
flag has changed. It starts traversing “done” CR entries, pro-
cessing packets pointed to by the Rx descriptors indicated by
them, replenishing these buffers, and advancing both rings’
tails. Once the core reaches a CR entry with “done” set to 0,
it stops and resumes polling the CR.

We remark that a separate CR is used instead of piggyback-
ing this protocol on Rx descriptors to avoid having both the
NIC and software writing to the same cache line concurrently
(by updating different descriptors in the same cache line),
which creates cache contention and hazards [72].

3 Motivation
We focus on kernel-bypass applications that interact directly
with the NIC using, e.g., the data plane development kit
(DPDK) [38]. These applications process packets in a run-
to-completion manner and employ polling to receive pack-
ets [3, 39, 43]. The I/O working set problem has been shown
to affect socket-based applications as well [66, §6]

3.1 The I/O Working Set Problem
Network-intensive applications depend on DDIO [15] and
similar technologies to keep up with network rates of hun-
dreds of Gbps and to enable low-latency packet processing.
DDIO allows I/O devices to perform DMAs directly to/from
the CPU’s LLC, bypassing main memory when possible. With
DDIO, DMA reads are satisfied by the LLC if the requested
bytes are present. DMA writes place data into the LLC, either
overwriting existing cached contents of the receive buffer or
allocating new cache lines for it. By default, DDIO may al-
locate new cache lines in up to 10% of the LLC ways (two
ways in the setup described in §6).

When DDIO allocates new cache lines, it evicts existing
entries, writing them back to main memory. If this evicted
data is later needed for further processing or transmission,
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Figure 1: PrivRing packet reception using a single private receive
ring and associated completion ring. Highlighted regions indicates
changes relative to the previous stage. For simplicity, we depict only
the Rx ring’s head and tail positions, assuming identical head/tail
positions in the CR (which is not necessarily the case).

it must be fetched from memory. At high data rates, the re-
sulting increase in memory traffic—from both evictions and
re-accesses—can create memory bandwidth bottlenecks.

DDIO effectiveness depends on the size of the I/O work-
ing set, defined as the memory regions DMAed by an I/O
device over some time interval [66]. When an I/O-intensive
workload has a working set that exceeds LLC capacity, it
leads to the “leaky DMA” problem [22, 79]: new packets
written by the NIC evict not-yet-processed packets from the
LLC. As a result, CPU accesses to packet data are served
from main memory, which is slower and may even become a
bottleneck [1, 13, 21, 23, 42, 51, 54, 62, 64, 65, 69, 74, 79, 82].
If slower memory accesses cause a core to fall behind the
packet arrival rate, its Rx ring fills up, and latency becomes
proportional to the ring size, as each new packet must wait
for an entire ring’s worth of packets to be processed.

Ideally, the I/O working set would depend only on soft-
ware processing time, i.e., buffers could be reused by the NIC
immediately when released by software. However, the NIC
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Figure 2: Large I/O working set causes high memory bandwidth (c),
degrading throughput (a) and latency (b). Top labels compare to Rx
size of 64. Vertical lines delimit where the I/O working set size fits
in DDIO’s portion of the LLC, in the LLC, or exceeds the LLC.

interface creates a dependency on the number (N) and size
(R) of Rx rings. Rx rings are prepopulated with buffers, and
as ring descriptors are cyclically accessed, an Rx buffer b can
be reused only after the NIC uses all other buffers in the ring,
even if software has released b earlier. In contrast, Tx rings
contain only in-flight packets, so they are usually empty or par-
tially full. Thus, the I/O working set size is at least the union
of all Rx buffers, which is of size |Rx| = N ×R×1500B.

The growing gap between stagnant CPU speed and ever-
increasing NIC bandwidth results in |Rx| growing with hard-
ware advances, thus exceeding LLC capacity [28,66,74]. The
reason is that this gap necessitates increasing both the size
R and number N of the Rx rings, because: (1) packet bursts
experienced by individual cores become bigger and should
be absorbed to avoid packet loss [20, 37, 81], and (2) packet
processing requires additional cycles, disallowing any single
core from driving the NIC to its full capacity [27, 65].

We demonstrate the I/O working set problem by evaluating
the impact of increasing the Rx ring size on a stateful load
balancer (LB) network function (NF). In each experiment, LB
uses all cores of a 16-core CPU, which has a 22 MiB LLC
and two 100 Gbps NVIDIA ConnectX-5 NICs, for process-
ing 1500 B packets (§6 details the full experimental setup).
Figure 2 shows that enlarging the I/O working set worsens
throughput by up to 0.8×, latency by up to 37× (due to rings
filling, as explained above), and memory bandwidth by up to
4.9×. Line rate throughput is achieved when the I/O working
set fits in the two LLC ways used by DDIO (ring size R≤ 128).
Results degrade in two steps: when the I/O working set ex-
ceeds the DDIO ways but fits in the LLC (128 < R < 1024)
and when it exceeds the LLC (R ≥1024). Other NF applica-
tions behave similarly (not shown).

One may wonder why NFs should use all cores, if the result
is an excessive I/O working set. The answer is that systems
often do not have fixed workloads, and all cores are neces-
sary to maximize throughput in certain workloads. Figure 3
demonstrates this issue by showing LB throughput under max-
imal rates of either 1500 B or 64 B packets, as the number of
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Figure 3: NF throughput scales with small 64 B packets but not
with large 1500 B packets due to the increased I/O working set.

LB cores varies. For 1500 B packets, maximal throughput is
reached at 12 cores. But for 64 B packets, throughput peaks at
16 cores, as the I/O working remains small. Thus, our goal is
to address the I/O working set problem in the most demanding
cases—for the benefit of all workloads.

3.2 Limitations of Existing Solutions
We next discuss various approaches for shrinking the I/O
working set to fit in the LLC and explain why they are unsat-
isfactory. In §4.3, after introducing rxBisect, we detail how it
avoids the limitations discussed here.

Few Dispatchers This approach, showcased by Shin-
juku [42] and Shenango [62], uses a few “dispatcher” cores,
each with a large Rx ring, to distribute packets among the
remaining worker cores. While such systems can saturate
≈40 GbE links, the dispatcher cores become the bottleneck
as link speeds increase to 100 Gbps and beyond [27].

Small Private Rings (PrivRings) A privRing system can
employ smaller private per-core rings, such that the I/O work-
ing set fits in the LLC. But reducing the Rx ring size below
the default (1 Ki) makes rings unable to absorb packet bursts,
resulting in packet loss that degrades the performance of loss
sensitive protocols such as TCP [66].

ShRing ShRing reduces the I/O working set by sharing
default-sized Rx rings among multiple cores [66].1 ShRing
associates several per-core CRs with a single Rx ring, en-
abling the NIC to spread packets among the sharing cores in
a lockless manner. But shRing still necessitates locking and
atomic instructions when cores update the shared Rx ring,
which adds overhead to packet processing compared to the
lockless privRing design (as we show in §6.2).

A major problem with shRing is that it leads to packet
loss under load imbalance, where some application cores are
consistently overloaded (receiving packets faster than they
can process) while others are not. In such conditions, by
queueing theory, the overloaded cores monopolize the shared
Rx queue and starve their underloaded counterparts for space.

1ShRing is based on Mellanox Receive Memory Pools (RMP) [57], which
are insufficient to implement rxBisect; see discussion in §7.
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Figure 4: Imbalanced RSS distribution across 16 cores during a
30-second segment of a real-world packet trace.

Consequently, shRing is necessarily a dynamic heuristic that
should be turned off upon such imbalance.

3.3 Imbalanced Load in the Wild
Imbalance is uncommon in IETF (Internet Engineering Task
Force [34]) benchmarks and academic network function (NF)
studies. But it does occur in NF workloads [6, 43] and is
widespread in other contexts like microsecond-scale remote
procedure calls [17, 42, 45, 50, 67, 77].

Figure 4 exemplifies real-world imbalance by analyzing
a 30-second sequence from the 2018-03-15 NYC CAIDA
dataset [12]. We compute the per-packet Receive Side Scal-
ing (RSS) [59] hash values that the NIC uses to assign packets
to 16 cores, and we display the number of packets per second
received by each core (left), along with the ratio between the
minimum and maximum per-core packet rates (right). The
ratio stays between 325–433% throughout. In §6.2, we eval-
uate dynamic shRing and rxBisect by replaying this trace,
and we show that rxBisect throughput is 20% higher as it
accommodates imbalance, whereas shRing turns itself off.

4 RxBisect
RxBisect is a new NIC-CPU interface designed to address
the I/O working set problem. RxBisect disentangles the tradi-
tional Rx ring’s empty buffer allocation and packet reception
functionalities, allowing them to be managed independently.
RxBisect supports two types of rings: allocation (Ax) rings,
where a core produces empty buffers for the NIC, and bisected
reception (Bx) rings, where the NIC produces incoming pack-
ets, stored in buffers it consumes from allocation rings.

The crux of rxBisect is that each bisected reception ring
r can be associated with several allocation rings (of differ-
ent cores), enabling the NIC to deliver packets to r as long
as some allocation ring is not empty. This association is not
exclusive—multiple Bx rings can be associated with over-
lapping (or identical) sets of Ax rings. In this way, rxBisect
turns the union of the set of empty buffers produced by each
core into a globally shared resource, co-managed by the NIC

and software in a lockless manner. This design allows each
core to maintain a large bisected reception ring (for absorbing
bursts) without having to independently maintain a large set
of empty buffers—it only requires a small allocation ring.
Thus, rxBisect ensures that the I/O working set size is kept
below LLC capacity.

In the following, we detail rxBisect’s receive-side process-
ing in the NIC (§4.1) and by software (§4.2). RxBisect does
not modify the Tx side and so we do not discuss it. We
then pinpoint how rxBisect addresses the limitations of the
privRing and shRing designs (§4.3). Next, we discuss NIC
hardware implementation issues (§4.4). Finally, we present
rxBisect parameter configuration guidelines (§4.5).

4.1 NIC Side
An rxBisect NIC supports two types of receive-side rings:
allocation (Ax) and bisected reception (Bx) rings. Each Ax
ring entry points to an empty buffer for the NIC to consume in
order to store an arriving packet. Each Bx ring entry holds a
descriptor through which the NIC notifies software of packet
delivery and/or consumption of an empty buffer. Each Bx ring
entry holds a pointer to a received packet and the index of
the Ax entry and Ax ring that produced the packet’s buffer.
Bx entries also hold a “done” flag and a corresponding sense-
reverse indication flag, whose purpose is the same as in the
CRs of the existing NIC interface described in §2.

Figure 5 depicts rxBisect’s flow. Initially (Figure 5a), soft-
ware allocates memory for allocation and bisected reception
rings. Allocation rings are filled with entries pointing to MTU-
sized buffers to receive packets and bisected reception ring
entries are left empty, as the NIC will overwrite them. Cru-
cially, the number of allocated buffers in each Ax ring can
be smaller than the size of the Bx rings, which is the key to
reducing the I/O working set size (§4.3).

Software then associates each Bx ring r with several Ax
rings, indicating to the NIC that buffers from these allocation
rings can be used to store packets destined to r. Software also
links each Ax ring a with some Bx ring r, indicating to the
NIC that notifications about buffers consumed from a should
be delivered through r. For simplicity, assume for now that
software (1) allocates per-core Ax and Bx rings, (2) links a
core’s Ax ring to its Bx ring, and (3) associates every Bx ring
in an application with all the Ax rings of that application. (We
discuss another software usage model in §4.2.)

When packets arrive (Figure 5b), an rxBisect NIC maps
each incoming packet to a Bx ring exactly as a packet is
mapped to an Rx ring in today’s NICs, e.g., using RSS. For
each packet, the NIC chooses an Ax ring with available buffers
according to some policy (e.g., the linked Ax ring or a random
non-empty Ax ring if it is empty), and consumes a buffer from
that Ax ring to store the packet. In the depicted scenario, a
burst of five packets arrives for core 0. The first four packets
exhaust its Ax ring, and thus the fifth packet is placed in a
buffer allocated from core 1’s Ax ring. To deliver each packet,
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Figure 5: RxBisect packet reception using two allocation (Ax) rings
and two bisected reception (Bx) rings. Ax ring buffers are shared
by both Bx rings through NIC hardware. Highlighted text indicates
changes relative to the previous stage. The Ax head advances counter-
clockwise and the Bx head advances clockwise.

the NIC first DMA-reads a packet buffer address from the Ax
head descriptor entry, and then DMA-writes the packet’s data
to the packet buffer.

The NIC notifies the receiving core about a delivered packet
by DMA-writing the packet buffer’s address to the target Bx
ring’s head descriptor entry. The NIC notifies the allocating

core about the consumed buffer by DMA-writing the buffer’s
Ax ring and entry to the head descriptor of the Bx ring linked
to it. In the common case, in which the receiving core is also
the allocating core, these notifications are combined into a
single descriptor, as shown in Figure 5b for buffers b0, . . . ,b3.
Finally, the NIC updates the Ax and Bx ring head indexes,
optionally raising an interrupt for both. Importantly, packet
delivery latency that is determined by the number of depen-
dent DMAs, which we call the “critical path,” is the same in
privRing, shRing, and rxBisect (§4.4).

Finally (Figure 5c), each core processes notifications in its
Bx ring (either by polling or following the aforementioned
interrupt). It processes delivered packets and/or replenishes
buffers consumed from its Ax ring with empty buffers that
it allocates, including notifying the NIC (by means of updat-
ing the Ax ring’s tail) that new buffers are available. After
processing a packet, its buffer is freed back to the system
allocator. We expand on software-side processing in §4.2.

4.2 Software Side
Our discussion relates to software that directly interacts with
the NIC, i.e., kernel-bypass applications or in-kernel drivers.
Software has flexibility in how it leverages rxBisect to mini-
mize the I/O working set by configuring Ax rings such that the
aggregated size of their buffers does not exceed LLC capacity.
For example, software can use small (e.g., 128-entry) per-core
Ax rings. Or, software can employ a small number of large Ax
rings, which are served by a few dedicated allocation cores
while the remaining cores focus on packet reception. The
discussion below does not assume a specific configuration. In
any case, the buffer-free bisected receive rings should remain
large, to absorb bursts. We detail Ax and Bx configuration
guidelines in §4.5.

Allocation Mechanism The only constraint rxBisect makes
on the software architecture is that it support allocation and
freeing of a buffer by different threads/cores. This scenario
can occur when a buffer allocated from one core’s Ax ring
is used to hold a packet destined to a different core, which
will then have to free this buffer after processing the packet.
Fortunately, many modern multicore allocators support this
allocator capability [9]. In particular, both the Linux kernel
and DPDK already use such allocators [4,19]. At a high level,
these allocators employ a two-level design consisting of a
shared buffer pool with a per-core caching level, which re-
duces contention on the shared pool. Caches are filled from
the shared pool when they run out of buffers and caches drain
excess buffers to the shared pool when they grow beyond
some threshold of the cache’s expected size (e.g., 1.5× in
DPDK). The two-level allocator design is important for amor-
tizing the cost of buffer transfer between cores. Due to it, we
observe a difference of at most 15 cycles in average allocator
call latency between rxBisect and privRing (where buffers
never move across cores).



1 int RxBisect(Ring *ax, Ring *bx,
2 void **pkts , int len) {
3 uint32_t idx, npkts = 0, nalloc = 0;
4 BXEntry *bxe;
5 while (npkts < len && bxe = consumeBXE(bx)) {
6 if (bxe->buf != NULL)
7 pkts[npkts++] = bxe->buf;
8 if (bxe->idx == ax->idx) {
9 ax->desc[bxe->idx].buf = alloc_buf();

10 nalloc++;
11 }
12 }
13 if (nalloc > 0) {
14 ax->tail += nalloc;
15 *ax->doorbell = ax->tail;
16 }
17 return npkts;
18 }

Listing 1: RxBisect disentangled ring receive code.

Receive Flow Listing 1 shows the rxBisect receive func-
tion, which dequeues a batch of packets for processing as well
as handles notifications about allocated buffers that require
replenishing. The function receives an allocation ring (ax),
a bisected reception ring (bx), and an output array of packet
pointers (pkts) of length len. It returns the number of re-
ceived packets. Multiple cores run this code in parallel with
different ring arguments, which are all interlinked by NIC
hardware to share Rx buffers.

Lines 5–12 check the Bx ring for new entries. The Bx
ring check in consumeBXE(bx) uses the sense reverse tech-
nique (§2) to identify ready entries without writing to Bx
descriptors. When no Bx entry is ready, this function returns
NULL; otherwise, it returns the first ready entry and updates
the Bx ring’s tail. (We omit consumeBXE’s code.)

Each returned Bx entry indicates both the pointer of a re-
ceived buffer, if there is one, and an Ax ring and entry index
of a buffer consumed by the NIC. If the Bx entry contains a
packet buffer, the packet is stored for processing (lines 6–7).
If the Bx entry describes a buffer originating from the core’s
Ax ring, then a new Ax buffer is allocated in its stead (lines 8–
10). Lines 13–16 check if allocation requests were handled
and advance the Ax ring’s tail index if necessary. It is correct
to advance the tail because the NIC consumes buffers in ring
order and enqueues all the related notifications to this Bx ring
in the same order. The code does not limit the number of
allocations, to replenish as many buffers as possible. Nev-
ertheless, the number of allocation iterations is bounded by
the Ax ring size, because once it becomes empty, only this
function can replenish it.

4.3 Comparison to PrivRing and ShRing
By disentangling buffer allocation from reception, rxBisect
obtains three advantages: (1) the total number of allocated
buffers in Ax rings can be smaller than the total size of the Bx
rings, which reduces the I/O working set size; (2) the NIC can
use buffers from any Ax ring to populate any Bx ring, so buffer

sharing is achieved similarly to shRing; but (3) in contrast to
shRing, sharing buffers is achieved without sharing the cores’
packet reception capacity or software synchronization.

Figure 6 depicts these differences. The figure compares
the minimal I/O working set of two cores running privRing,
shRing, and rxBisect. In privRing (Figure 6a), each core can
work independently, without synchronization or other depen-
dencies on other cores’ behavior. However, the existing NIC
ring interface necessitates that an Rx ring able to absorb
packet bursts must also hold many empty buffers, resulting in
an excessive I/O working set.

ShRing (Figure 6b) solves privRing’s I/O working set prob-
lem by sharing a default-sized Rx ring, which can absorb
packet bursts, between the cores, but it requires synchroniza-
tion (with locks) to serialize reposting of buffers to the shared
ring and advancing the ring’s tail. Crucially, shRing always
incurs this latency-increasing per-packet overhead, even if the
workload does not suffer from the I/O working set problem
(e.g., because the packet rate allows a packet’s processing to
complete before its eviction from the LLC).

In addition, with shRing, traffic destined to an overloaded
core can monopolize the shared ring, preventing other cores
from receiving packets. E.g., in Figure 6c, because the over-
loaded core 2 cannot sustain its packet rate, packets destined
to it start queueing, eventually filling the ring. Thus, packets
to core 1 get dropped, despite it being able to process them.

RxBisect (Figure 6d) combines the advantages of privRing
and shRing without inheriting their disadvantages. Disentan-
gling the existing Rx ring functionality into bisected reception
and allocation rings with independent sizes allows rxBisect
to realize a shared buffer pool, based on small per-core al-
location rings—but with cores still working independently,
without software synchronization or inter-core dependence.
Synchronization is only required when moving freed buffers
between cores, but as explained in §4.2, this synchronization
is infrequent and its cost is low.

Handling of Imbalanced Load Like shRing, RxBisect re-
duces the minimal I/O working set by relying on a shared
buffer pool, which avoids the over-provisioning of Rx buffers
that occurs in privRing. It is therefore natural to ask how rxBi-
sect responds to load imbalance that, in shRing, causes the
ring to be monopolized by overloaded cores. As discussed
next, thanks to rxBisect’s disentanglement of packet recep-
tion from buffer allocation, overloaded cores can only “hog”
packet buffers, leading to more buffers being allocated, but
they cannot interfere with packet reception by other cores.

In rxBisect, per-core Ax rings guarantee the availability
of vacant receive buffers for the NIC to consume as long as
there is at least one underloaded core with an Ax ring and the
buffer allocator can satisfy allocation requests. For allocators
preconfigured with a fixed number of buffers, their buffer pool
must be large enough to keep satisfying allocation requests
even when Bx rings of overloaded cores are full.
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Figure 6: RxBisect and shRing reduce the I/O working set size
compared to privRing. Unlike shRing, rxBisect shares buffers with-
out software locks, and it allows each reception ring to consume
buffers from any allocation ring belonging to the same application.

Let us denote cores 1 and 2 as C1 and C2, and consider,
for example, the scenario in Figure 6d, where C2’s Ax is ex-
hausted and its Bx is nearly full. Suppose this Bx becomes
completely full—which necessarily means it contains buffers
from C1’s Ax—and then C2 stalls. In this case, C1’s Bx con-
tains notifications to repopulate its Ax buffers, and because C1
is not overloaded, it can process them. Subsequently, C1’s Bx
can continue to receive packets using buffers allocated from
its own Ax. Meanwhile, the lack of empty Bx entries on C2
causes the NIC to drop packets of C2. The important property
here is that cores with available cycles can receive packets,
which is not true of shRing (Figure 6c). Note, however, that
the I/O working set might grow due to the additional buffer
allocations, beyond the minimal set depicted in the figure.

4.4 Hardware Design Considerations
RxBisect is a new NIC-CPU interface whose complete imple-
mentation in ASIC is beyond our scope. Instead, we contrast
rxBisect with existing NIC ASICs and show that the necessary
changes are compatible with existing NIC mechanisms.

Packet Delivery Mechanically, rxBisect’s packet delivery
algorithm is analogous to that of existing NICs, which al-
ready access two rings (Rx and CR) on packet delivery (§2).
Consequently, the critical path of packet delivery in rxBisect
is identical to that which current NICs use for privRing and
shRing. In all hardware designs, the NIC DMA-reads (and
can prefetch) buffer addresses populated by software in ring
structures (an Rx ring in current NICs and an Ax ring in
rxBisect). RxBisect selects the destination ring in the same
way as privRing and shRing when buffers are available, and
otherwise it finds a ring with available descriptors based on
availability information known from Ax and Bx doorbells.
Subsequently, all types of NICs DMA-write packet data fol-
lowed by DMA-writing a notification in a descriptor of a
target ring (a CR in current NICs and a Bx ring in rxBisect).
When rxBisect needs to notify different Bx rings about packet
delivery and buffer consumption, it performs these DMA-
writes in parallel, without increasing the critical path length.

While such parallel writes might increase PCIe bandwidth
consumption, this issue can be mitigated by batching notifica-
tions. The NIC will delay writing a Bx entry that describes
only a buffer consumption until a packet for that Bx ring ar-
rives (or a timeout). Because the waiting Bx entry and the new
Bx entry (for packet arrival) are adjacent, they can typically
be written with the same PCIe transaction. Similar “com-
pletion compression” mechanisms already exist in NVIDIA
NICs [32, 33], indicating that this technique is practical.

Hardware vs. Software Synchronization Both rxBisect
and shRing implement a shared buffer pool, but shRing places
the synchronization burden on software, whereas rxBisect of-
floads it to hardware as follows. NIC ASICs use pipeline paral-
lelism to meet line-rate speeds. The pipeline stage that assigns
packets to ring entries processes them sequentially, one at a
time. The rxBisect pipeline stage operates like privRing when
both Ax and Bx rings corresponding to an arriving packet have
available entries. But it must consume a buffer from another
Ax/Bx pair when the destination Ax is empty. This decision
can be made efficiently using combinatorial logic circuits,
such as priority encoders. We discussed rxBisect applicability
to real ASIC NICs with NVIDIA NIC architects, who made
the following statement regarding rxBisect’s applicability to
the ConnectX NIC pipeline [52]:

“An rxBisect implementation in ConnectX fits within the ex-
isting pipeline stage [that implements shRing] while main-
taining current performance for multiple rings with available
entries. In the worst case, when a single [Ax] ring provides
buffers to several reception rings, performance will be limited
by the allocation rate of the single ring.”

4.5 Parameter Configuration Guidelines
We propose the following guidelines to configure Ax and Bx
rings. We first discuss the case of a single NIC and subse-
quently generalize to multiple NICs.



Ax/Bx Association For maximum flexibility, an application
should use an all-to-all association of Ax/Bx rings. The reason
rxBisect supports configurable Ax-to-Bx associations is to
allow different applications (with disjoint Ax/Bx-sets) to work
concurrently on disjoint core-sets.

Bx Ring Size (|Bx|) The primary consideration in setting
|Bx| is that it will be large enough to absorb packet bursts. For
100 Gbps NICs, Figure 3a in the shRing paper [66] shows that
|Bx|= 1024 is necessary and sufficient. This size is also the
default for many systems and NIC vendors.

Ax Ring Size (|Ax|) The Ax ring should be sized to achieve
two goals: (1) the I/O working set should fit into the LLC’s
DDIO capacity, i.e., k × |Ax| × 1500B ≤ |DDIO|, where k
is the total number of Ax rings and |DDIO| is the DDIO
capacity; and (2) the Ax rings should have enough buffers to
absorb a packet burst without software buffer re-filling, i.e.,
k×|Ax| ≥ |Bx|. In addition, |Ax| cannot be smaller than the
vendor-enforced minimum (e.g., 64 in NVIDIA NICs).

In theory, the number of cores may be so large or DDIO
capacity so small that |Ax| constraints (1) and (2) cannot both
be satisfied, but we did not encounter this issue in practice.

Multiple NICs Cores should be divided among NICs in pro-
portion to traffic demands. For example, if traffic is balanced
among the NICs, cores should be equally divided between the
NICs. When setting |Ax|, the total number of Ax rings over
all NICs should be used for k in condition (1) above, but k in
condition (2) should remain the number of per-NIC Ax rings.

5 Prototype
Implementing rxBisect requires changes to the NIC ASIC.
Therefore, like other related studies [5, 31, 44, 63, 75, 76], we
evaluate rxBisect using a software NIC framework, which we
developed in DPDK. The framework allows us to run unmod-
ified DPDK applications and emulate all NIC architectures of
interest for comparison purposes.

Implementation We implement the emulation using a ded-
icated core, referred to as the emulator, which acts as the NIC
for all worker (application) cores. The emulator uses either
multiple physical Rx rings when emulating privRing (one
per worker; see emulator in Figure 7a), or a single physical
Rx ring shared by multiple workers when emulating shRing
and rxBisect (Figures 7b and 7c). Multiple physical Rx rings
are required for privRing to ensure strict separation of packet
buffers between workers, as placing empty buffers from dif-
ferent workers in the same Rx ring would allow incoming
packets for one worker to be stored in buffers allocated by
another—violating privRing’s isolation property.

The emulator mediates incoming traffic by exposing vir-
tual rings to worker cores (queues on top of the emulator
in Figures 7a–7c). It does so by executing an infinite loop
that: (1) reads a batch of packet pointers from the physical
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Figure 7: An emulated NIC uses twice as many Rx entries as the
corresponding non-emulated architecture, thereby doubling the I/O
working set size. This also applies to rxBisect (as Σ |Ax| = |Rx| in
Figure c), so comparing rxBisect to the emulated versions is fairer.

Rx ring(s); (2) dispatches packets to the appropriate virtual
queues (completion rings for privRing and shRing, Bx rings
for rxBisect); and (3) replenishes the physical ring(s) with
buffers taken from virtual Rx or Ax rings. Dispatching deter-
mines the target virtual queues by the least significant bits of
RSS hash values, which are computed from each packet’s 5-
tuple. For privRing, the value is always the same per physical
Rx ring, which corresponds to a single virtual ring. In contrast,
for shRing and rxBisect, packets from the same physical Rx
ring may yield different RSS values.

Usage The I/O working set of each emulated version is
twice that of its non-emulated counterpart because: (1) it
doubles the number of Rx entries by maintaining a virtual Rx
ring in addition to using a physical one; (2) each physical or
virtual Rx ring is fully populated by design; and (3) each Rx
entry must be used before it can be reused. The 2× ratio also
applies to rxBisect, as the combined size of all Ax rings is set
equal to that of the physical Rx ring used by the emulator—a
ring that would not exist in a hardware implementation.

Thus, methodologically, it is fairer to compare rxBisect to
its emulated counterparts, which better isolates performance
differences due to changing I/O working sets, constituting an
apples-to-apples comparison. Frequently, however, emulated
rxBisect performs similarly to or better than non-emulated
versions, in which case we prefer to compare it to the latter.
These results likely underestimate the benefit of rxBisect.

DDIO DDIO effects (§3.1) are reflected in the emulated
setup. To avoid competing with worker cores, the emulator
runs on a separate CPU located on a different NUMA node
than the workers (Figure 8). DDIO, however, operates only
within the node directly connected to the physical NIC (de-
noted N0). Nevertheless, running the emulation code on an-
other node, remote from the NIC, is not problematic in our
framework for two reasons. First, the emulator only manipu-
lates pointers to packet buffers and never accesses the packet
contents. As a result, packets remain on N0—local to the
NIC—ensuring DDIO functions normally from the workers’
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throughput (Gbps) latency (µsec)
NF setup non emu dif non emu dif
LB privRing 162 145 -11% 1,224 1,432 +17%

small privRing 195 192 -2% 110 96 +15%
shRing 194 195 -0% 69 69 +0%

NAT privRing 155 136 -12% 1,256 2,431 +94%
small privRing 196 179 -9% 89 124 +39%

shRing 195 195 -0% 67 67 -0%

Table 2: Emulation fidelity (non, emu, and dif stand for non-
emulated, emulated, and difference, respectively).

perspective with respect to packet data. Second, our evaluation
focuses on larger (≤ 1500 B) packets to stress the memory
subsystem. Unlike packets, the virtual queue descriptors that
point to them ping-pong between nodes. But the size of each
descriptor (one cache line) is small compared to the associated
packet, so the effect is limited.

Overheads To faithfully emulate the overhead of hardware
NIC packet delivery, we emulate worker doorbell writes via
MMIO writes to NIC memory. Additionally, we emulate the
extra DMA write to the Bx ring that occurs when a packet’s
buffer does not originate from the receiving core’s Bx ring by
issuing 64 B self-target RDMA writes from NIC memory to
host memory.

Fidelity To be useful, the emulation should underestimate
the performance achievable with a real hardware NIC, while
remaining comparable. We assess whether this is the case in
Table 2, which compares the performance of the emulated and
non-emulated versions of default privRing, small privRing,
and shRing (described in §3.2) using the NAT and LB NFs.
Full experimental details are provided in §6. We observe that
emulated throughput and latency indeed underperform by
up to 12% and 94%, respectively. Emulation latency nearly
doubles in the NAT/privRing case as workers are overloaded
and each packet must wait through two full Rx rings (virtual
and physical) before being processed. Throughput, in contrast,
is insensitive to such queueing delays.

6 Evaluation
We evaluate rxBisect using network function benchmarks and
the MICA key-value store [49], when load is balanced and
shRing performs well (§6.1) and when it does not (§6.2).

System Setup We use two Dell PowerEdge R640 servers.
One server is the system under test and the other is the load
generator. The load generator runs the stateless Cisco T-Rex
packet generator [14], modified to improve latency measure-
ment accuracy [68]. Each server has dual 2.1 GHz Xeon Silver
4216 CPUs, each with 16 cores and an 11-way 22 MiB LLC,
and 128 GiB (=4×16 GiB) 2933 MHz DDR4 memory. The
servers are connected back-to-back via two pairs of 100 Gbps
NVIDIA ConnectX-5 Ethernet NICs [58] and are configured
following NVIDIA’s DPDK best performance guidelines [61].

All experiments use the default system and application
settings. We report trimmed means of ten runs, i.e., with the
minimum and maximum discarded. Standard deviation is
always below 5%. Throughput results reflect the traffic rate
sent back to the load generator after processing, i.e., they
discount packets dropped by the server.

Applications We use address translation (NAT) and load
balancing (LB) NFs, implemented with FastClick [7]. NAT
remaps network addresses. LB assigns flows to one of 32
servers. Both rewrite packet IP headers, using a 10 M-entry
hash table to maintain state. As a macrobenchmark, we use
the MICA key-value store [49]. Applications run on one CPU
of the test server (the other CPU is reserved for emulation).
Unless noted otherwise, we dedicate 8 cores to each NIC.

Evaluated Architectures We compare five architectures:
(1) rxBisect, with 128-entry Ax ring and 1 Ki-entry Bx ring
for each core (emulated); (2) privRing, with the default 1 Ki-
entry Rx ring per core; (3) small privRing, which decreases
the per-core ring size by 8× (from 1 Ki to 128) to obtain the
same I/O working set size as rxBisect and shRing (proven
impractical, as it impedes burst absorption, but included as a
yardstick); (4) shRing, with two shared default-sized (1 Ki-
entry) Rx rings, one per NIC, such that each is shared by 8
cores (implemented using the RxArr variant [66]); and, when
relevant, (5) an idealized version of dynamic shRing, which
does not run but instead reports the better result between
privRing and shRing.

Comparison Methodology As explained in §5, rxBisect
should be compared to the emulated variants. We neverthe-
less compare it to the non-emulated executions, showing the
emulated counterparts (with patterned bars or dashed lines)
only when non-emulated execution outperforms rxBisect.

6.1 Balanced Load
This section shows that rxBisect, like shRing, performs well
when load is balanced or bursty and it outperforms privRing
even when rxBisect is emulated and privRing runs natively.
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Figure 9: Buffer sharing allows single-core rxBisect and shRing to
achieve the same no-drop throughput as 1 Ki privRing with only 1/8
of its buffers, in contrast to small privRing, which does not share.

No-Drop Throughput Figure 9 shows the DPDK l3fwd
RFC2544 no-drop throughput of one 100 Gbps NIC with
1500 B packets when using an individual core (“single core”)
and 8 cores combined (“multicore”). RxBisect and shRing’s
buffer sharing enables them to match privRing’s throughput
with only 1/8 of its I/O working set, both with multiple cores
(each of which handles 1/8 of the traffic) and with a single
core, which can absorb bursts by using all available buffers.
In contrast, small privRing does not share and thus fails to
similarly absorb bursts, which makes it impractical [66].

NAT and LB We run NAT and LB on all 16 cores and load
them with 200 Gbps using 1500 B packets. Figure 10 shows
(a) throughput, (b) latency, (c) ring occupancy, (d) DDIO hit
rate, and (e) memory bandwidth. The latter two are measured
using Intel PCM [36]. At this load, architectures with a small
I/O working set achieve line rate throughput and comparable
average latency (100 µs–119 µs). This is due to their effective
use of the 2 LLC ways assigned by default to DDIO (Fig-
ure 10e). Since rxBisect is emulated while others run natively,
its latency, ring occupancy, memory bandwidth, and DDIO
miss rate are higher than the rest (see also §5).

Due to its large I/O working set, privRing throughput col-
lapses by up to 20% compared to rxBisect. As a result of
failing to sustain line rate, privRing’s Rx rings fill up, caus-
ing latency to increase by 11× due to the additional queueing
time. PrivRing can achieve line rate in LB if DDIO’s LLC por-
tion is increased to 8 LLC ways, but fails to achieve line rate
for NAT even if all the LLC is assigned to DDIO. (Of course,
exposing more LLC ways to DDIO is a double-edged sword,
as I/O and application memory accesses compete [83].)

Key-Value Store We use the MICA key-value store [49]
to evaluate the effect of rxBisect beyond NFs. We run MICA
on 8 cores (using a single NIC) with 128 B keys and 1024 B
values. MICA maps incoming requests to processing cores
by hashing the target key. We use workloads with 95% PUT
requests at the highest possible rate.

Figure 11 shows throughput obtained when the key distribu-
tion is (a) uniform or (b) skewed (Zipf with parameter 0.99).
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Figure 11: MICA key-value store throughput with uniform and
skewed key distributions. Top labels compare to emulated privRing.

The throughput of rxBisect is higher than privRing, small
privRing, and shRing (all emulated) by up to 37%, 3% and
7%, respectively. The throughput of rxBisect is also higher
than non-emulated privRing and shRing by up to 18% and
6%, respectively. RxBisect underperforms (by up to 12%)
only the yardstick non-emulated small privRing, which is not
a practical architecture.

6.1.1 Impact of Ring Sizes

This section shows the impact of varying Ax and Bx ring
sizes. It demonstrates that buffer sharing enables improved
burst absorption with small Ax rings, and that the I/O working
set is not sensitive to the size of Bx rings.

Varying Ax ring size We evaluate the impact of Ax ring
size on no-drop throughput using the RFC2544 [10] bench-
mark in DPDK l3fwd. The test uses 1500 B packets from a
single flow directed at an application running on four cores,
while varying the size of rxBisect Ax rings and non-emulated
privRing Rx rings. The size of rxBisect Bx rings is fixed at
1 KiB. Figure 12 shows the results.
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Figure 12: DPDK l3fwd no-drop throughput, utilizing 4 cores and
a single 100 Gbps NIC while varying the size of Ax rings (rxBisect)
and Rx rings (privRing). RxBisect Bx rings are set to 1 Ki entries
for all runs, similarly to Rx rings. RxBisect buffer sharing improves
burst absorption, leading to higher no-drop throughput.

RxBisect leverages buffer sharing across the four Ax rings,
allowing a single core’s Bx ring to absorb bursts up to four
times larger than a single Ax ring and up to the size of the Bx
ring. Consequently, rxBisect achieves the maximum single-
flow no-drop throughput of ≈80 Gbps with just 256 Ax ring
entries, whereas privRing requires four times more—1 Ki
entries—to reach the same performance.

Varying Bx ring size We evaluate the sensitivity of the I/O
working set to Bx ring size using the following experiment.
NAT and LB run on all 16 cores under a 200 Gbps load with
1500 B packets. Figure 13 shows throughput as we vary the
size of rxBisect Bx rings and non-emulated privRing Rx rings,
with rxBisect Ax rings fixed at 128 entries.

As expected, increasing privRing Rx ring size grows the
I/O working set, reducing throughput—first as it exceeds the
DDIO-allocated portion of the LLC (at 256 entries), and more
significantly when it exceeds the total LLC capacity (at 1 Ki
entries). In contrast, increasing rxBisect Bx ring size does not
increase the working set, sustaining line-rate throughput.

6.2 Unbalanced Load: ShRing Limitations
Next, we show that rxBisect remains effective even when
shRing is not. ShRing is ineffective upon imbalance that
leads to overload, which may occur because incoming traf-
fic is spread unevenly across cores, or because per-packet
processing times are highly-skewed. Additionally, shRing is
ineffective when its smaller I/O working set does not compen-
sate for its synchronization overheads.

The dynamic shRing variant addresses these limitations by
switching between shRing and privRing at run time using a
heuristic that assesses which is currently more beneficial [66].
We therefore compare to this variant as well.

Conceivably, dynamic core frequency scaling can mitigate
imbalance by helping overloaded cores at the expense of less
busy cores. But when using DPDK, dynamic core scaling is
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Figure 13: Throughput at 200 Gbps load while varying the size of
Bx rings (rxBisect) and Rx rings (privRing). The size of rxBisect Ax
rings is 128 entries for all runs. The rxBisect I/O working set size is
constant and small, regardless of Bx size, avoiding the performance
degradation experienced by privRing with ≥256 Rx entries.

irrelevant due to core busy polling. We confirm this by running
with and without scaling and observing similar results.

Processing Variability We evaluate a synthetic NF work-
load running on all 16 cores and processing 1500 B packets.
Packet processing consists of accessing two random addresses
in a 40 MiB buffer, performing a routing table lookup (simi-
larly to the l3fwd NF), and sending the packet out. We desig-
nate one core per each NIC as the “target core.” We modify
the load generator to send only 1 Gbps of traffic to the target
core while the rest is spread between the other cores. We also
tweak the target core’s packet processing routine to access
memory a configurable number of times per packet (other
cores’ processing remains unchanged).

Figure 14 presents the resulting throughput. RxBisect and
small privRing attain line rate throughput. However, shRing’s
throughput degrades by up to 60% as the target core’s process-
ing slows down, clogging the shared ring with its traffic and
blocking other cores from receiving packets (which thus get
dropped). Dynamic shRing only offers the best of shRing and
privRing, and thus it declines from shRing’s line rate speed
to privRing’s throughput (never above 178 Gbps, due to its
I/O working set) when the target core’s processing exceeds
100 memory accesses per packet. Consequently, rxBisect out-
performs dynamic shRing by up to 12%.

Traffic Variability We use the same synthetic NF as above.
Only now, all cores run the same packet processing logic,
but we modify the load generator configuration to vary the
percentage of packets directed at the target core. We use
64 B packets for traffic directed at the target core and 1500 B
packets for traffic directed at all other cores, to minimize the
target core’s impact on overall throughput.

Figure 15 shows the resulting throughput. RxBisect and
small privRing attain line rate throughput. RxBisect experi-
ences a 6% throughput degradation when the target core’s
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Figure 14: Processing variability caused by increased memory
accesses has no effect on rxBisect throughput despite ring sharing,
whereas shRing’s sharing degrades throughput when faced with such
increased variability.

tgt
total packets tgt alloc

total tgt f ree
total non-tgt alloc

total non-tgt f ree
total

1% (minimum) 0.140% 0.000% 0.002% 0.003%
31% (maximum) 0.001% 0.010% 0.039% 0.000%

Table 3: RxBisect inter-core memory allocator cycles out of all
cycles on target (tgt) and non-target (non-tgt) cores during minimum
(1%) and maximum traffic imbalance (31%) to target core.

packet rate exceeds 20%, as a result of the emulator core
becoming a bottleneck. To demonstrate this, we also show
small privRing emulation, whose performance degrades at
a rate similar to rxBisect when the target core’s packet rate
exceeds 25%. ShRing throughput declines by up to 49% as
the target core’s incoming packet rate increases, again due to
its traffic clogging the shared ring. PrivRing throughput never
exceeds 175 Gbps, and so dynamic shRing is outperformed
by rxBisect.

Inter-Core Memory Allocator RxBisect depends on inter-
core memory allocators (e.g., DPDK’s pktmbuf_pool),
which use per-core caches to reduce synchronization. How-
ever, rxBisect packet buffer sharing can transfer buffers be-
tween cores, potentially stressing the memory allocator (allo-
cating on one core and releasing on another core can deplete
the per-core cache on the former).

We analyze the global allocator cycles from the traffic
variability experiment. Table 3 presents results for rxBisect at
the extremes of imbalance. For other architectures, allocator
cycles are always under 0.001% of total cycles (not shown).
Overall, the allocator uses less than 0.2% of total cycles in all
cases. At minimal target core load, it processes fewer packets,
spending 0.14% of cycles in the allocator providing buffers to
other cores. At maximal load, non-target cores spend 0.039%
cycles allocating buffers to be used by the target core, which
spends 0.01% cycles’ returning buffers to the global allocator.

Real Packet Trace Figure 16 shows NAT and LB through-
put when processing the CAIDA trace analyzed in §3.3,
co-located with PageRank [8] to increase memory band-
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Figure 15: Traffic variability caused by increased packet arrival
rate on a single core has no effect on rxBisect throughput despite
ring sharing. In contrast, shRing’s approach to ring sharing degrades
throughput in this case.
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Figure 16: RxBisect outperforms dynamic shRing when processing
the imbalanced CAIDA trace (see §3.3) with PageRank co-location.

width pressure. Dynamic shRing selects the better option
between privRing and shRing, but both perform suboptimally:
the added memory bandwidth pressure degrades privRing,
while the imbalanced load (highlighted in Figure 4) degrades
shRing. Thus, rxBisect outperforms dynamic shRing through-
put for LB and NAT by 16% and 20%, respectively.

Figure 17 shows results from a similar set of experiments,
this time with a varying number of co-located STREAM
triad [41] instances, which are memory bandwidth inten-
sive. RxBisect throughput exceeds dynamic shRing by up
to 16% (emulated) and up to 8% and 13% (non-emulated) for
NAT and LB, respectively. We show both emulated and non-
emulated results because, unlike other workloads we studied,
CAIDA trace processing slows down under emulation. As a
result, non-emulated privRing—and therefore non-emulated
dynamic shRing—can outperform (emulated) rxBisect by up
to 7% in the absence of memory contention.

With no memory bandwidth contention, dynamic shRing
defaults to privRing, which performs well with the imbal-
anced trace. But as contention increases, shRing begins to
outperform privRing, prompting the dynamic variant to switch
to shRing. In both cases, when making an apples-to-apples
comparison of emulated NICs only (by “usage” in §5), rxBi-
sect performs better, as it uses less memory bandwidth and is
resilient to imbalanced load.
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Figure 17: When comparing emulated setups (apples-to-apples),
rxBisect outperforms dynamic shRing regardless of the number of co-
located STREAM instances. Top and bottom labels compare rxBisect
to emulated and non-emulated dynamic shRing, respectively.
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Figure 18: Under low load, shRing yields no benefit and demon-
strates its synchronization overhead. In contrast, rxBisect’s overhead
is minimal. Top labels compare against emulated privRing.

Low Traffic Rate Figure 18 shows the per-packet process-
ing time (in CPU cycles) for NAT and LB when arriving
traffic consists of 1 Gbps of 1500 B packets, which are spread
evenly among all cores. Non-emulated shRing’s synchro-
nization overhead results in it spending up to 34% and 46%
more cycles per packet than non-emulated privRing and small
privRing, respectively. In contrast, rxBisect (which runs under
emulation) requires ≈ 10% fewer cycles to process a packet
than non-emulated shRing. We can safely conclude that with
rxBisect hardware, rxBisect will leverage Rx buffer sharing
for a small I/O working set with faster packet processing than
in shRing. Based on rxBisect’s design, which is similar to
privRing, and emulation results, we hypothesize that native
rxBisect packet processing efficiency will be comparable to
privRing’s.

7 Related Work

Leaky DMA NICs write directly to two LLC ways with
DDIO. Poor I/O working set management causes incoming
packets to unnecessarily evict LLC data including other pack-

ets being processed; this is also called the “leaky DMA” prob-
lem [79]. Several works, complementary to ours, tackled the
leaky DMA problem by partitioning the LLC between I/O
and applications to avoid interference [83] and by placing
only packets headers in the LLC [29, 65, 71].

Host-NIC Interfaces Recently, Ensō [70] proposed a
streaming interface for NIC that reduces PCIe overheads
which enables line-rate processing of small packets. Ensō
is, however, orthogonal to rxBisect because it still suffers
from the I/O working set problem which rxBisect solves. The
two are complementary: Ensō helps with small I/O working
sets and rxBisect helps with large I/O working sets.

Sharing Receive Buffers ShRing [66] and RDMA shared
receive queues (SRQ) [35], like rxBisect, share Rx buffers
between cores. But both shRing and SRQ perform poorly
with load imbalance. Mellanox receive memory pools (RMP)
is a hardware abstraction that can be used to share buffers
between several Rx rings that reside on the same core [48]
or to implement shRing, but RMP still employs a traditional,
entangled Rx ring through which both allocation and recep-
tion are done. As a result, RMP cannot share buffers between
several cores without locking to advance the shared ring’s tail
pointer. Junction [26] shares receive buffers via RMP and han-
dles load imbalance by using work stealing and a dedicated
core that monitors workers and refills ring buffers. RxBisect,
in contrast, allows all cores to be workers, improving total
packet processing capacity.

Load Imbalance Load imbalance is a fundamental problem
in parallel processing. In end-host networking, packets are
typically spread among cores using receive side scaling (RSS),
which assigns packets to cores based on a hash value com-
puted from packet header fields [59]. Custom RSS functions
can rebalance the load between cores [6], but this approach is
inherently static and cannot address dynamic load imbalance.
Several recent works tackle the dynamic imbalance problem
by offloading transport or application layers to the NIC, such
that it can rebalance incoming messages among cores accord-
ing to their load [17, 50, 77]. RxBisect is complementary to
these approaches as it helps reduce the I/O working set size
by sharing packet buffers without synchronization.

8 Conclusion
Today’s NIC interface needlessly overcrowds the LLC with
I/O buffers to absorb worst-case packet bursts, degrading
the performance of high-throughput applications. RxBisect
absorbs bursts with much fewer buffers by untangling the dual
role of Rx rings.
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