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Abstract

The end of Moore’s law and the rapid growth in Ethernet network speeds introduce
bottlenecks across all host system components, and in particular CPU and memory.
Network Interface Controllers (NICs) are ideally positioned to alleviate these bottle-
necks as all network data flows through them in any case. Furthermore, hardware
pricing trends indicate that NIC upgrades are more cost efficient than CPU upgrades,
and that NIC functionality upgrades that preserve NIC speed and port number are es-
sentially free. In this dissertation, we therefore offload CPU-intensive operations to the
NIC, or alleviate the CPU when offloading is not possible.

For a class of applications that process packets based on the headers—rather than
the data—of incoming packets, needlessly moving data from the NIC to host mem-
ory introduces NIC, PCIe, and memory bandwidth bottlenecks. We therefore pro-
pose to expose the on-NIC memory (nicmem) that is often underutilized for storing
packet data. We demonstrate this using two applications: network functions (NFs) and
key-value stores (KVS). Our approach improves latency by up to 43% and increases
throughput by up to 80%.

CPU-intensive layer-5 protocol logic (e.g., encryption) built on top of TCP can ben-
efit from NIC offloading, but this typically entails offloading the underlying layer≤4
network stack. We propose an approach that breaks this dependence, allowing of-
floading only data-intensive computations. A main challenge our approach faces is
coping with out-of-sequence packets. We implement our approach for two protocols:
(i) NVMe-over-TCP zero-copy and CRC computation, and (ii) HTTPS encryption. Our
approach increases throughput by up to 3.3x, and it improves CPU and latency by up
to 0.4x and 0.7x, respectively.

The NIC interface of multicore CPUs causes high memory bandwidth when using
too many private per-core reception buffers which absorb bursts but exceed the last-
level cache to do so. We therefore study two ways to share these buffers between cores:
shRing and rxBisect.

ShRing shares a ring between cores using per-core completion rings (CRs). CRs
allow cores to process packets on the shared ring independently. But, synchronization
is still necessary when advancing the shared ring’s head. ShRing is therefore beneficial
only when memory contention is greater than the cost of synchronization, and we use
a heuristic to enable shRing only in these cases. Our implementation runs on DPDK
using NVIDIA ConnectX NICs. Our results show that shRing improves throughput by
up to 1.27x and it reduces latency by up to 38x.

1
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RxBisect improves upon shRing by redesigning rings to avoid their inherent producer-
consumer entanglement that causes synchronization: (1) memory allocation, whereby
the core “produces” empty buffers that the NIC “consumes” for storing packets; and
(2) packet delivery, whereby the NIC “produces” incoming packets that the core “con-
sumes” (receives). RxBisect substitutes each ring with two rings: one for each producer-
consumer functionality. We implement rxBisect on DPDK using NIC emulation. Our
implementation improves throughput by up to 20% and latency by up to 11x. The sig-
nificant latency gains of both shRing and rxBisect occur when they meet line rate load
whereas the baseline fails to do so.



Chapter 1

Introduction

The Internet services which we enjoy in our day-to-day lives—search, social network-
ing, online maps, video sharing, online shopping—run on Data Centers (DCs). DCs
are warehouse scale computers that consist of thousands of machines which are inter-
connected via fast networks. Building and maintaining DCs is tremendously expen-
sive, for example, Amazon’s DC in Tel-Aviv spans over 100,000 square feet and they
estimate that building each DC costs approximately 2.37 billion USD where only 280
million USD are designated for the land and buildings and the rest is for computing
infrastructure [10, 11].

Technology companies seeking to maximize their return on investment (ROI) must
efficiently utilize their DCs which is particularly challenging because rapid computer
technology changes shift the bottleneck component in DCs. Our work is motivated by
a number of recent technology trends in DC servers: (1) Network Interface Controller
(NIC) upgrades are cheaper than CPU upgrades (§1.1.1); (2) NIC offloads are essen-
tially free as long as NIC speed and port number remain the same (§1.1.2); (3) NIC
speeds are greater and grow faster than the speeds at which CPUs can drive NICs
(§1.1.3); and (4) memory bandwidth is an oversubscribed resource shared by both
CPUs and NICs, and as memory bandwidth contention increases memory accesses for
both slows down linearly at first and then exponentially (§1.1.4).

Based on these trends, in this dissertation, we propose to improve DC ROI by
alleviating CPU and memory using the NIC whenever possible: avoiding needless
data transfer between the CPU and the NIC (§1.2.1), and offloading data-intensive
layer-5 protocol computations without necessitating the offload of all layer≤4 protocols
(§1.2.2). When offloading is not an option, we propose to make better use of CPUs. We
observe that the way NICs interface to multicore CPUs results in ≥1Ki receive buffers
per-core being used to absorb bursts, and that these buffers exceed the last-level cache
causing high memory bandwidth (§1.2.3). We consider two solutions to this problem
that use less receive buffers while still absorbing bursts. Our two approaches achieve
this by sharing buffers between cores. Our first approach shares a ring between mul-
tiple cores, which imposes synchronization when updating the shared ring, and we
therefore use a heuristic to enable it only when memory contention justifies it (§1.2.4).
Our second approach proposes a way to share buffers without synchronization by
disentangling the ring’s packet-reception functionality from its buffer-allocation func-

3
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Table 1.1: The four topics covered in this dissertation. Each topic is introduced in this
chapter (2–3 pages per topic) and is later covered by a dedicated chapter that is mostly
based on the associated paper.
# topic preview chapter referred paper

of results
sect. page chap. page ref. venue

1 NIC memory offloads 1.2.1 9 2 18 [271] ACM International Conference on
Architectural Support for

Programming Languages and
Operating Systems (ASPLOS’22)

2 Autonomous L5P offloads 1.2.2 11 3 40 [270] ACM International Conference on
Architectural Support for

Programming Languages and
Operating Systems (ASPLOS’21)

3 Shared receive rings 1.2.4 15 5 68 [268] USENIX Symposium on Operating
System Design and

Implementation (OSDI’23)
4 Disentangled receive rings 1.2.5 16 6 87 Work in progress.
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Figure 1.1: CPU upgrades are costlier than NIC upgrades. CPU data is for Intel CPUs
and NIC data is for multiple vendors.

tionality and assigning a dedicated ring for each—two rings per-core with the buffer-
allocating rings sharing their buffers with multiple buffer-receiving rings (§1.2.5).

Dissertation roadmap This dissertation is structured around the aforementioned four
topics: host computations and data movement offloads and two CPU-NIC interface
optimizations for when offloading is not possible; as shown in Table ??. Each topic is
associated with a separate chapter, which in turn is largely based on a corresponding
paper. Other than these four chapters, this dissertation includes another three: this
chapter, which introduces our work, a chapter describing the I/O working set problem
which our proposed CPU-NIC interfaces solve, and a chapter with our conclusions.

1.1 Motivation

1.1.1 NICs are cheaper than CPUs

Hardware upgrades are a common method of improving data center performance.
When upgrading hardware, one must consider the cost of the various alternatives.
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Here, we compare CPU and NIC upgrades using data and analysis from Kuperman
et al. [12]. The results in Figure 1.1 show that NIC upgrades are always more advanta-
geous relative to CPU upgrades.

The CPU data corresponds to Intel CPUs. Each point corresponds to a pair of CPUs
(c1, c2) such that: (1) the number of cores in c1 is smaller than that of c2; (2) the cache
size (MB), power (W), and QPI speed (GT/s) of c1 are proportionally smaller than that
of c2; and (3) the series, version, speed (GHz), and process node (nm) of the two are
identical. For example, the following two CPUs are adjacent:

c1: $612 6-core E5-2630L v2 2.40GHz 12T 15.00MB 60W 7.20GT/sec QPI 22nm
c2: $2336 12-core E5-2695 v2 2.40GHz 24T 30.00MB 115W 8.00GT/sec QPI 22nm

The data points (x, y) in Figure 1.1 represents the relative cost of upgrading from
c1 to c2 and the resulting relative number of cores added: x = $2336

$612 ≈ 3.8 and y =
12−core
6−core = 2.

Similarly, the NIC points in Figure 1.1 correspond to NICs from Chelsio, Dell, Emulex,
HotLava, Intel, Mellanox, and SolarFlare. Two NICs (n1, n2) are adjacent if: (1) the
speed of n1 is smaller than that of n2; (2) the power (W) and PCIe generation and num-
ber of lanes of n1 are proportionally smaller than that of n2; and (3) the vendor, product
series, port number, form factor, and connector types are the same. For example, the
following two NICs are adjacent:

n1: $244 10GbE ConnectX-4 Lx EN MCX4111A-XCAT single SFP+ port PCIe 3.0 x8
n2: $482 40GbE ConnectX-4 Lx EN MCX4131A-BCAT single QSFP28 port PCIe 3.0 x8

The corresponding (x, y) data points in Figure 1.1 represents the relative cost of
upgrading from n1 to n2 and the resulting relative bandwidth added: x = $482

$244 ≈ 1.97
and y = 40GbE

10GbE = 4.
The diagonal line marks the break even point, in other words, where the relative

cost of added hardware is equal to the relative amount of added hardware. Since all
CPU points are below the line whereas all NIC points are above the line, we conclude
that NIC upgrades are more cost effective compared to CPU upgrades.

One possible reason underlying this trend might be Intel’s dominance in the CPU
market at the time in question, which may enable Intel to push CPU prices up, while
the NIC market has more competition. Regardless of the reason, the aforementioned
trend suggests that making better use of NICs will improve data-center ROI.

1.1.2 NIC Offloads are Essentially Free

When considering to modify or add some NIC functionality, it makes sense to evaluate
the cost of the relevant alternatives and see which is preferable in terms of price, with
the overall goal of maximizing performance per dollar [12–16].

We study the cost of various changes in application-specific integrated circuit (ASIC)
NICs. We find that such changes are cost-effective for clients relative to any potential
alternative, because commercial NIC pricing data indicates that clients get ASIC NIC
offloads essentially for free.
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Table 1.2: Generations of the Mellanox ConnectX NIC over the last decade, and some
of the capabilities they introduced.

gen. year added offloads
3 [17] 2011 stateless checksum [18], Large Segmentation

Offload (LSO) for TCP over VXLAN and
NVGRE [19]

4 [20] 2014 streaming/striding receive queue
interface [21, 22], Large Receive Offload
(LRO) [23], Receive Side Scaling (RSS) [24],
VLAN insertion/stripping [25], accelerated
receive flow steering (ARFS) [26], on-demand
paging (ODP) [27], T10-DIF signature offload
(T10-DIF) [28]

5 [29] 2016 header rewrite [30], adaptive routing for
RDMA [31], NVMe over fabric [32], host
chaining support [33], MPI tag matching and
rendezvous [34], UDP Segmentation Offload
(USO) [35]

6 [36] 2019 block-level AES-XTS 256/512 bit [37]
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and LX models support Ethernet. VPI models support Ethernet and InfiniBand. Prices
of older NICs are typically similar to prices of newer NICs that agree on throughput
and number of ports (ellipses), even though the latter provide additional capabilities.

To back the above claim, Figure 1.2 shows the prices of different Mellanox NIC
generations in the last decade, as specified in the Mellanox website [38]. Each NIC
generation features additional capabilities, listed in Table 1.1. The figure uses different
colors for different NIC generations. It reveals that prices are typically determined by
the NIC’s throughput and number of ports, such that NICs from different generations
usually have a similar price if they agree on these two properties. Price similarity ex-
ists despite the fact that NIC capabilities substantially improve across generations, so
customers do not have to pay more to enjoy additional capabilities.

We note that, for readability, we omit prices of (1) NIC bundles that add some hard-
ware component to the basic NIC, (2) NICs suitable for the Open Compute Project
board [39], and (3) NICs that have PCIe connectivity far exceeding their throughput.
Including these does not change the conclusion.
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1.1.3 NIC > CPU Speeds

NICs are not only more cost-effective than CPUs, but, as we show next, the growth in
the speed of NICs has outpaced the speed of CPUs for the past several years. Figure 1.3
shows this trend using the past progression of the maximal bandwidth a single NIC can
support compared to the network bandwidth a single CPU may consume.

The NIC line corresponds to the full-duplex throughput of a single-port NIC. The
CPU line shows a relatively high per-core rate of 10 Gb/s TCP, which is about 50% of a
core’s cycles in a bare-metal setup when running the canonical netperf benchmark [40];
let us assume the other 50% is needed for computation, as netperf does not do anything
useful. The number of cores shown reflects the highest per-CPU core-count available
from Intel and AMD for the corresponding year. We multiply the assumed maximal
per-core bandwidth with the highest core count and display the product as the max-
imal throughput that one CPU may produce/consume (optimistically assuming that
OSes can provide linear scaling when all CPU cores simultaneously do I/O). The fig-
ure indicates that CPU speeds must double to satisfy the speed provided by a single
NIC. This suggests that offloading CPUs to NICs is not only beneficial but it will also
improve the utilization of the most expensive component, i.e., the CPU.

1.1.4 Memory Bandwidth Bottlenecks

One reason for CPU slowness is memory bandwidth contention. Memory is a key
resource that is shared by the NIC and the CPU. CPUs read/write memory when pro-
cessing data and NICs send/receive data using memory to store data between the CPU
and the network. Server memory bandwidth is typically oversubscribed: (1) I/O traf-
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fic exceeds available memory bandwidth in recent servers; and (2) host-local traffic has
exceeded available memory bandwidth by at least 3x for the last several years [41].

Figure 1.4 demonstrates the rapid growth in server I/O bandwidth relative to mem-
ory bandwidth. We collect data from Intel, AMD, NVIDIA, Amazon, and Ampere
server CPUs between 2017 and 2023. We then calculate I/O bandwidth based on the
available PCIe lanes and their generation. For example, an Intel Sapphire Rapids CPU
has 80 PCIe generation 5 lanes—about 500 GB/s of bidirectional data (250GB/s per-
direction) can be transferred after subtracting PCIe protocol overheads. We calculate
memory bandwidth based on the available memory channels and supported memory
speed. For example, the same Intel processor supports 8 memory channels each ca-
pable of 4800 MT/s of 8 bytes—about 307 GB/s of data. Hence, in our example, I/O
bandwidth exceeds memory bandwidth by 500

307 ≈ 1.62.
The figure shows that for all servers, today’s I/O bandwidth is greater than mem-

ory bandwidth: for AMD and ARM servers I/O bandwidth is double the memory
bandwidth, and it is 1.67x higher for Intel servers. We speculate that Intel is an excep-
tion only because its process node technology is lagging behind TSMC, which the other
vendors use.

Memory, like I/O, can suffer from queueing and high access latency as load in-
creases. The memory bus slows down linearly at first, but as load builds up and ap-
proaches its peak, memory bandwidth slows down exponentially. Figure 1.5 shows
this phenomena by measuring CPU memory access latency with varying background
memory bandwidth using Intel’s memory latency checker [42] on a Xeon Silver 4216
CPU with 128 GiB (=4x16 GiB) 2933 MHz DDR4 memory. The results show that increas-
ing memory bandwidth increases access latency linearly at first and then exponentially
as memory bandwidth approaches saturation.
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To reduce memory bandwidth that is caused by I/O, CPUs offer direct cache access
technologies, such as Intel Direct Data I/O (DDIO) [43]1, that satisfy NIC direct mem-
ory access (DMA) operations from the last level cache (LLC) rather than main memory,
which is faster/cheaper and may thus also improve throughput and latency. Specifi-
cally, DDIO services DMA reads from the LLC if the target data is already there, which,
in addition to being faster, also reduces memory bandwidth contention. Symmetrically,
DDIO can perform DMA writes directly to the LLC instead of to main memory by ei-
ther overwriting existing LLC lines, if they reside in the LLC, or by allocating new lines
in up to two LLC ways.

1.2 Contributions

In this thesis, we propose to improve data center efficiency by alleviating CPU and
memory using the NIC whenever possible: in §1.2.1, we eliminate needless data trans-
fers between the CPU and the NIC, and, in §1.2.2, we offload data-intensive layer-5
protocol computations to the NIC without requiring the offload of layer≤4 protocols.
When the NIC cannot alleviate the CPU, we propose to make better use of CPU re-
sources. In §1.2.3, we observe that the NIC interface to multicore CPUs needs ≥1Ki
receive buffers per-core to absorb incoming bursts, and that the larger than LLC size
of these buffers induces high memory bandwidth that could have been avoided oth-
erwise. To solve this problem, we propose two solutions that share receive buffers
between cores. In §1.2.4, we share 1Ki receive buffers between several cores by repur-
posing existing interfaces as much as possible, and this results in some synchroniza-
tion between the cores that we only partially eliminate. We therefore use a heuristic
to enable our approach only when the cost of synchronization is lower than the cost of
memory contention. In §1.2.5, we eliminate the need for synchronization when sharing
receive buffers by separating the interface for buffer “production” on the CPU from the
interface for buffer “consumption” on the NIC, and then multiple buffer production
interfaces can feed one buffer consumption interface without synchronization.

1.2.1 The Benefits of General-Purpose On-NIC Memory

In Chapter 2, we propose an effective, previously unnoticed type of high-throughput
networking optimization that eliminates superfluous data movement between host
memory and the network. Our new optimization rests on three observations. Firstly,
there exists a canonical class of applications that are tasked with moving messages
around, from some source to some destination, by exclusively operating on the meta-
data of messages. In contrast, the associated data is not used by such applications ex-
cept for the purpose of moving it, as is. We denote this type of applications as data
movers (§2.1).

A notable example of data movers is found in network function virtualization (NFV)
workloads such as network address translation (NAT) [46] and load balancing (LB) [47].
In accordance with our above definition of data movers, such network functions are
characterized by the property that (1) they make decision based on packet headers

1Other processor vendors support similar technologies [44, 45]
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and may additionally modify these headers, but (2) they neither modify nor use packet
payloads save for delivering them to their destinations. Key-value stores such as Mem-
cached [48] and Redis [49] constitute another notable example of a data mover family
of applications. In this type of workloads, the key and value are the metadata and data,
respectively.

The second observation that underlies our proposed optimization is that all ma-
jor networking vendors, including Broadcom, Intel, and NVIDIA, increasingly equip
their NICs with a small, fast, internal memory [29, 36, 50–55]. For example, the newest
NVIDIA NIC (ConnectX6-Dx) is equipped with 4 MiB SRAM. Ordinarily, this memory
is designated to be used by various offloading, acceleration, and transport functionali-
ties that the NIC supports and that its users may employ.

The third observation that motivates our work is that this on-NIC memory is typ-
ically underutilized. The default setting of, e.g., the aforementioned NIC uses less
than 15% of the internal memory, and NVIDIA usage data indicates that clients sel-
dom configure their NICs to use significantly more. Moreover, NVIDIA NIC designers
acknowledge that it would be reasonably easy to increase the size of the NIC’s internal
SRAM (and/or add bigger/slower/cheaper DRAM) provided a compelling use case
that needs the additional memory.

In light of the above observations, rather than keeping the on-NIC memory internal,
we suggest to expose its unused part to software, to be utilized for general purposes, as
regular memory, through memory-mapped I/O (MMIO). We denote this exposed part
as “nicmem,” and we propose to leverage it for optimizing data mover applications.

We assign the name “nmNFV” (short for “nicmem NFV”) to our system that opti-
mizes for NFV data movers with the help of nicmem. In implementing it, we rely on
the ability of existing NICs to split each incoming packet into two different buffers that
store the packet’s header and payload [52, 56, 57]. When arming the receive (Rx) ring
with memory buffers that absorb the incoming traffic, the NIC’s packet-splitting ability
allows nmNFV software to use nicmem for storing payload buffers, simply by popu-
lating the relevant Rx ring fields with nicmem pointers. In parallel, nmNFV software
uses pointers to regular host memory for header buffers. Consequently, when a packet
arrives, its header is placed in host memory, but its payload remains on the NIC, thus
reducing PCIe traffic, host memory traffic, and hence latency. For data mover network
functions (NFs), the header provides all the information required, so the NF does not
mind that the payload is remote. When the NF finishes operating on the header, it
transmits the packet using the same payload (nicmem) pointer it received, thus further
reducing PCIe and host memory traffic and latency.

Splitting the header and payload of packets between nicmem and host memory
(“hostmem”) allows us to incorporate a second optimization in nmNFV. Let p denote
an incoming (or outgoing) packet, and let h denote its header. In the baseline system, p
is stored in its entirety somewhere in hostmem, and this memory location is pointed to
by some Rx (or Tx) ring entry. But in nmNFV, only h is stored in hostmem, so instead
of pointing to h’s location, nmNFV can write h’s content to the associated ring entry,
leveraging the fact that packet headers are relatively small. We call this optimization
“header inlining.” We find that it is effective because it improves data locality and
reduces the number of CPU cycles and PCIe roundtrips required to process p.
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Figure 1.6: Preview of experimental results.

In dealing with key-value stores (KVS), we use the name “nmKVS” (short for “nicmem
KVS”) to describe our system that optimizes KVS workloads with the help of nicmem.
The nmKVS infrastructure accelerates KVS data mover applications by letting them
store popular values in nicmem. When incoming requests target such values, the data
mover induces smaller PCIe and hostmem traffic overheads similarly to nmNFV, which
likewise results in lower latency and higher throughput. KVS workloads are com-
monly skewed, exhibiting Zipf distributions [58–60]. Because nicmem is smaller than
hostmem, such workloads are most suitable for nmKVS.

We describe our design of nmNFV and nmKVS (§2.2), and we explain how we im-
plement a realistic prototype of the two using the NVIDIA ConnectX-5 NIC and its
nicmem (§2.3). We experimentally evaluate our prototype using micro- and macro-
benchmarks (§2.4). Figure 1.6 provides a preview of some of these results, using: two
request-response (“RR”) implementations [61, 62] that ping-pong a small message be-
tween them; the MICA [63] key-value store accelerated with nmKVS and serving a
single (“s”) or multiple (“m”) clients; and the aforementioned NAT and LB network
functions accelerated with nmNFV. As can be seen, our approach improves latency
and throughput by up to 43% and 80%, respectively.

1.2.2 Autonomous NIC Offloads

In Chapter 3, we propose an architecture for offloading layer-5 network protocol (L5Ps)
data-intensive computations to NICs without necessitating the offload of any layer≤4
protocols. L5Ps built on top of TCP are commonplace and widely used. Examples
include: (1) the transport layer security (TLS) cryptographic protocol [64, 65], which
provides secure communications for, e.g., browsers via https [66]; (2) storage protocols
like NVMe-TCP [67], which allow systems to use remote disk drives as local block
devices; (3) remote procedure call (RPC) protocols, such as Thrift [68] and gRPC [69];
and (4) key-value store protocols, such as Memcached [48] and MongoDB [70].

L5Ps are frequently data-intensive, as it is in their nature to move bytes of network
streams to/from memory while possibly transforming or computing some useful func-
tion over them. Such processing tends to be computationally heavy and therefore
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might adversely affect the performance of the applications that utilize and depend
on the L5Ps. In most cases [71], the data-intensive processing consists of: encryp-
tion/decryption, copying, hashing, (de)serialization, and/or (de)compression. It is
consequently beneficial to accelerate these operations and thereby improve the per-
formance of the corresponding applications.

We classify prior approaches to accelerate L5P processing into three categories (§3.1).
The first is software-based. It includes in-kernel L5P implementations, such as that of
NVMe-TCP [72, 73] and TLS [74]. It also includes specialized software stacks that by-
pass the kernel and leverage direct hardware access [75, 76]. These type of techniques
are good for reducing the cost of system software abstractions. But they are largely
irrelevant for accelerating the actual data-intensive operations.

The second category consists of on-CPU acceleration. It encompasses specialized
data-processing CPU instructions, such as those supporting the advanced encryption
standard (AES) [77, 78], secure hash algorithms (SHA) [79, 80], and cyclic redundancy
check (CRC) error detection [81, 82]. These instructions can be effective in accelerating
L5Ps. But then they themselves become responsible for most of the L5P processing
cycles, motivating the use of off-CPU accelerators, which comprise the third category,
and which we further subdivide into two subcategories: accelerators that are off and
on the networking path.

Off-path computational accelerators include various devices that may encrypt, de-
crypt, (de)compress, digest, and pattern-match the data [83, 84]. Their goal is to allow
the CPU to offload much of the data-intensive computation onto them to make the code
run faster. The problem is: (1) that the CPU must still spend valuable cycles on feeding
the accelerators and on retrieving the results; (2) that developers might need to rewrite
applications in nontrivial ways to effectively exploit the accelerators; and (3) that, re-
gardless, the accelerators consume memory bandwidth and increase latency because
the CPU must communicate with them via mechanisms such as direct memory access
(DMA). Therefore, the outcome of using off-path accelerators might be suboptimal [85].

NICs are on-path accelerators, and they do not suffer from the above problems. Be-
cause L5Ps are, in fact, network protocols, they necessarily operate NICs in any case,
and so driving them (as accelerators) does not incur any additional overhead costs.
Moreover, NICs are ideally situated for L5P acceleration, as they process the data while
it flows through them, avoiding the aforementioned latency increase and additional
memory bandwidth consumption associated with off-path accelerators. NICs already
routinely seamlessly handle offloaded computation for the underlying layer≤4 proto-
cols, such as packet segmentation, aggregation, and checksum computation and verifi-
cation [18, 19, 23].

Despite their seemingly ideal suitability, L5P NIC offloads are not pervasive. The
reason: existing designs assign NICs with the role of handling the L5P, which in turn
necessitates that the NICs also handle layer≤4 functionality upon which the L5P de-
pends, most notably that of TCP/IP [14, 86–88]. Such offload dependence is undesirable,
as implementing TCP in hardware encumbers innovation in the network stack [89], and
it slows down fixes when robustness [90] or security issues [91,92] arise. For these rea-
sons, Linux does not support TCP offloads [93, 94], and Windows recently deprecated
such support [95].
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We propose autonomous NIC offloads to address the above shortcomings and elim-
inate the aforementioned undesirable dependence. Autonomous offloads facilitate a
hardware-software collaboration for moving data between L5P memory and TCP pack-
ets, optionally transforming or computing some function over the transmitted bytes.
Autonomous offloads allow L5P software to outsource its data-intensive operations to
the NIC, while leveraging the existing TCP/IP stack rather than subsuming it, and thus
ridding NIC designers form the need to migrate the entire TCP/IP stack into the NIC.
Autonomous offloads are applicable to setups where the L5P and NIC driver can com-
municate directly, as is the case with, for example, in-kernel L5P implementations or
when userspace TCP/IP stacks are utilized.

The idea underlying autonomous offloads is for the L5P and NIC to jointly pro-
cess L5P messages (which may consist of multiple TCP segments) in a manner that
is transparent to the intermediating TCP/IP stack. When sending a message, the L5P
code “skips” performing the offloaded operation, thereby passing the “wrong” bytes
down the stack to the NIC. The NIC then performs the said skipped operation, result-
ing in a correct message being sent on the wire. In the reverse direction, under normal
conditions, the NIC parses incoming messages and likewise performs the offloaded
operation instead of the L5P while keeping the TCP/IP stack unaware.

A major challenge that we tackle when designing autonomous offloads is handling
out-of-sequence traffic, which occurs when TCP packets are lost, duplicated, retrans-
mitted, or reordered. We use the following three principles to address this challenge:
(1) we optimize for the common case by maintaining a small context at the NIC to pro-
cess the next in-order TCP packet; (2) we fall back on L5P software processing upon
out-of-sequence packets; in which case (3) we employ a minimalist NIC-L5P interface
that allows the L5P software to help the NIC hardware and driver to resynchronize and
reconstruct the aforementioned context.

Context reconstruction for incoming traffic (which is harder than that of outgoing
traffic) is driven by the NIC hardware and consists of: (1) speculatively identifying an
L5P message header in the incoming data using some “magic pattern” characteristic of
the L5P; (2) asking the L5P software to confirm this speculation using the aforemen-
tioned interface; (3) tracking the speculated L5P messages while waiting for confirma-
tion; and (4) seamlessly resuming offloading activity once confirmation arrives.

Not all common L5Ps can be autonomously offloaded. In §3.2, we highlight the
main ideas underlying autonomous offloads, and, importantly, we identify the proper-
ties that L5Ps should have to be autonomously offloadable. Then, in §3.3, we describe
the software and hardware design of autonomous offloads in general, and, in §3.4, we
present our concrete implementation for two L5Ps: NVMe-TCP and TLS, as well as
their combination.

Our TLS autonomous offload is already implemented in the latest generation of
Mellanox ConnectX ASIC NICs [53]; it offloads TLS authentication, encryption, and
decryption functionalities. Our NVMe-TCP autonomous offload implementation will
become available in a subsequent model; it offloads data placement at the receiving
end (which thus becomes zero-copy) and also CRC computation and verification at
both ends. Linux kernel support for the former has been upstreamed, while the latter
is currently under review.
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L5P application offloads max improvement
throughput CPU utilization latency

NVMe-TCP fio copy, CRC 2.2x 2.0x 1.3x
TLS iperf crypto 3.3x 2.4x N/A
NVMe-TCP nginx/http copy, CRC 1.4x 1.3x 1.2x
TLS nginx/https crypto 2.7x 1.3x 1.2x
both (NVMe-TLS) nginx/https all above 2.8x 1.7x 1.4x
both (NVMe-TLS) redis all above 2.3x 1.9x N/A

Table 1.3: Summary of evaluation results. Data is served either from memory (TLS),
or from a remote disk over NVMe-TCP, which can also be encrypted with TLS (NVMe-
TLS). In NVMe-TLS, crypto is offloaded for both sent HTTPS and received NVMe-TLS
traffic. “Crypto” is AES128-GCM encryption/decryption and authentication.

We experimentally evaluate the two offloads and their combination in §3.5, and we
find that they provide throughput that is up to 3.3x higher and latency that is as low
as 1.4x. When I/O devices become saturated, we show that our autonomous offloads
provide CPU consumption that is as low as 2.4x. Table 1.2 summarizes the results. We
further show that our offloads are resilient to loss, reordering, and performance cliffs
when scaling to thousands of flows that far exceed NIC cache capacities. Finally, in
§3.6, we expand on the applicability of autonomous offloads.

1.2.3 The I/O Working Set Problem

In Chapter 4, we describe today’s NIC-CPU interface and present the I/O working set
problem. Let the I/O working set [96] be the memory area that an I/O device (e.g., NIC)
reads/writes via DMA in a given time interval (§4.2). For networking intensive appli-
cations, this set should preferably fit in the LLC due to DDIO, as otherwise I/O-related
data competes for cache capacity and DMAs are increasingly served by main memory
instead of the LLC which causes memory bandwidth bottlenecks as a result [75,97–101]
(§4.2.1). But, the combination of (1) slow growth in LLC size compared to the number
of CPU cores and (2) the interface NICs use to interact with software pushes the I/O
working set size beyond the LLC for all high-bandwidth networking applications.

NICs deliver packets from the network to software via queues of pre-allocated
buffers, that are called “rings” (§4.1). By default each receive (Rx) ring consists of
≥1Ki buffers [102–106,106,107], each large enough to store Ethernet’s maximum trans-
mission unit (MTU) of 1500 B [108]. A typical Rx ring thus requires (1Ki × 1500B ≈)
1.5MiB. NICs support hundreds of such rings [36, 51, 52, 109], which software uses for
synchronization-free parallelism, assigning different rings to different cores in both ker-
nel [24, 26, 110–114] and user [115–119] network stacks. The combined size of all Rx
buffers across all cores constitutes a lower bound for the size of the I/O working set, as
the NIC sequentially operates on all Rx buffers, one after the other, so all buffers in the
circle must be used before they can be re-used.

To demonstrate the underlying technology trends, we collected the maximal num-
ber of rings (N) and the ring’s default size (R) from the datasheet and driver, respec-
tively, of every Intel NIC model released during 2000–2022. Table 1.3 shows a repre-
sentative summary; to conserve space, we only include the first NIC of each Ethernet
generation with increasing throughput.
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Intel gen. max ring default Xeon
year NIC (GbE) num. (rm) size (s) CPU LLC cores

2001 82544EI [122] 1 1 256 Xeon-2.0 [123] 256 KiB 1
2007 82598 [124] 10 64 512 Xeon-X5482 [125] 12 MiB 4
2014 X710-AM2 [126] 40 1536 512 Xeon-E72880 [127] 38 MiB 15
2020 E810-CAM1 [128] 100 2048 2048 Xeon-9282 [129] 77 MiB 56

Table 1.4: The first Intel NIC model in each GbE generations shown alongside the Intel
CPU launched at the same year whose LLC was the largest in that year. The number of
supported NIC rings and the default ring size are increasing.
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Figure 1.7: aggregate Rx size (N × R × 1500 B) grows faster than LLC size and has
already exceeded it in even the most minimalist configuration (based on data from
table 1.3).

Early 1GbE NICs supported only a single ring, but as multicore CPUs became more
common, subsequent 1GbE NICs supported up to 16 rings (not shown). Later, the first
generation of 10GbE, 40GbE, and 100GbE respectively introduced support for 64, 1536,
and 2048 rings.2 The default ring size likewise increased from 256 to 2048. Network
stacks and libraries adopt similar sizes. For instance, the default Rx ring size in all
sample apps in the DPDK library is currently 1024 [104].

The right side of Table 1.3 matches each NIC with an Intel CPU model launched at
that year, whose LLC was the largest at the time. Using this data, Figure 1.7 plots the
size of the LLC and the minimal and maximal |Rx| of the associated NIC. We see that
the maximal aggregate Rx size (assuming all N supported rings are used) was always
too big to fit in the LLC size in this time range. But in 2020, the aggregate Rx size of
even the most minimalist configuration—just one Rx per core—became too big. This is
the source of the problem.

The situation is exacerbated if considering logical, rather than physical cores (the
4.3x in the figure would have become 8.6x). We predict that this trend will continue, as
upcoming NICs will bring more features (and queues), with speeds of up to 800 GbE
expected in 2025 [130, 131].

We consider addressing the I/O working set problem by reducing the size of Rx
rings, as proposed by Tootoonchian et. al. [97] (§4.2.2). We find that a size smaller than

2It makes sense for N to be much bigger than CPU core number in order to support, e.g.: per-application
rings [119, 120]; per-container rings [117, 118]; a ring for every SRIOV [121] instance of every virtual CPU
of every virtual machine that runs on the host machine [111, 112]; and a hypervisor ring per VM ring for
fallback when flow rule offloading is not yet configured [113, 114].
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1Ki might cause a core to experience many more packet drops when the incoming traf-
fic targets this specific core. For example, a core may sustain 2x more packets without
drops using 1Ki entries instead of 128. (Increasing Rx sizes beyond 1Ki has no benefit in
our workloads.) In contrast, in multicore setups, using 128 entries per Rx ring reduces
the I/O working set size without incurring additional drops, provided the incoming
traffic is evenly spread between the cores, which curbs the traffic and bursts that each
individual Rx ring experiences.

Motivated by this finding, we propose two systems that share Rx buffers: shRing
(§1.2.4) and rxBisect (§1.2.5). By sharing buffers, our systems satisfy the simultaneous
needs of all sharing cores when incoming traffic is even or uneven. Sharing balances
buffer usage, allowing cores that sustain heavier traffic to utilize more Rx entries at the
expense of cores sustaining lighter traffic while keeping the I/O working set small.

1.2.4 ShRing: Networking with Shared Receive Rings

In Chapter 5, we present shRing, shRing is advantageous if (1) cache misses due to
ineffective DDIO usage cause non-negligible overhead, and (2) the workload avoids
pathologically imbalanced conditions, where a subset of the sharing cores are continu-
ously overloaded while their peers are underloaded. (NFV studies commonly assume
non-pathological conditions [99, 132–139], which might indicate the system is miscon-
figured.) If DDIO usage is effective, then shRing’s synchronization overhead might
degrade the performance, and if the workload is pathologically imbalanced, then the
overloaded cores might monopolize all the entries of the shared ring. ShRing thus dy-
namically identifies the above two conditions, and it turns itself on or off accordingly.

When operational, shRing boosts LLC hits by shrinking the working set, which
reduces the per-packet processing time (Pt) and thus increases throughput. If shRing’s
shorter Pt becomes smaller than packet interarrival time (It), queuing theory dictates
that ring occupancy drops from full to empty, dramatically shortening latency from
linear in the ring size to essentially Pt. But even if shRing’s Pt remains greater than It

(ring fully occupied, so latency is linear in ring size), latency still improves by a factor
of 1/N, as the per-core Rx ring size is effectively 1/N smaller, being shared by N cores.

Shared data structures commonly underperform due to software synchronization
overhead [26,132,140–143]. ShRing reduces this overhead by avoiding synchronization
when deciding which core will process which newly arriving packet. By using per-core
completion rings (CRs), the NIC spreads incoming packets between cores, adding the
integer index of each packet’s entry to the CR of the core that owns the packet [144].
Cores still require synchronization when notifying the NIC that ring entries can be
reused. ShRing bounds this overhead by limiting N, the number of sharing cores. We
use N=8, but other values may be preferable in other setups.

We explore two shRing variants. The first, “RxArr,” is a shared cyclic Rx array
structured similarly to a private ring. Because it is shared, its packet buffers routinely
become ready for reuse out of (array) order, as they are processed by different cores.
The problem is that, for correctness, RxArr is permitted to notify the NIC that entry i
can be reused only after all preceding entries (such as i-1) are likewise made reusable.
This constraint necessitates coordination between cores, which increases the overhead
of synchronization.
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Our second shRing variant, “RxList,” simplifies coordination by turning the shared
ring into a linked list using a “next” field added to Rx entries. When storing incoming
packets, the NIC follows list (rather than array) order. This change allows cores to
make entries immediately available for NIC reuse; they no longer have to wait for
preceding entries. We find, alas, that RxList performs poorly, as the linked list structure
undermines the NIC’s ability to prefetch Rx entries, ruling this design out for the time
being. We propose a modest NIC ASIC modification that resolves this problem (but
prevents us from experimentally evaluating this improved design).

We demonstrate in §5.2 that RxArr shRing works as expected, improving NFV mac-
robenchmark throughput by up to 1.27x and latency by up to 38x. In §5.3, we exper-
imentally show that our findings are also applicable to more traditional applications
that use kernel-based TCP sockets. Finally, we discuss related work in §5.4.

1.2.5 Disentangling the Dual Role of NIC Receive Rings

In Chapter 6, we observe that the root cause for all the undesirable trade-offs in shRing
and small private rings is the canonical Rx interface, which needlessly entangles two
orthogonal producer-consumer functionalities: (1) memory allocation, where software
produces empty buffers for the NIC to consume by storing incoming packets; and (2) packet
reception, where the NIC produces incoming packets for software to consume by pro-
cessing them.

Because of this entanglement, on one hand, we cannot reduce the number of Rx
buffers per core without simultaneously reducing a core’s ability to absorb packet
bursts; and on the other hand, we cannot share the system’s Rx buffer pool among
the cores without also sharing the cores’ packet reception capacity.

We propose rxBisect which solves this problem by redesigning the Rx NIC interface
to disentangle packet allocation from reception (§6.1). RxBisect splits the traditional cir-
cular Rx array into separate allocation (Ax) and bisected reception (Bx) rings, which are
independent of each other and may therefore have different sizes. Crucially, rxBisect
supports cross-core receive buffer sharing by allowing the NIC to consume an allo-
cated buffer from any Ax ring to store an incoming packet, regardless of the packet’s
destination Bx ring, provided that both Ax and Bx rings belong to the same software
entity/domain. (And provided that the allocation and reception occur on the same
NUMA node, to avoid NUMA effects.)

To replenish allocated buffers, the NIC posts a notification to a core’s Bx ring when-
ever it consumes a buffer from that core’s Ax ring. In the common case of the Ax and
Bx ring belonging to the same core, this notification is included in the new packet’s
descriptor. When processing a Bx descriptor with said notification, the core places a
fresh empty buffer into its Ax ring.

With rxBisect, each core can employ a 1Ki Bx ring, which may be empty or full
if, respectively, none or most of the incoming traffic is directed at that core. Allocation
rings can then be defined to be much smaller, to reduce the overall I/O working set and
achieve the desired effect. RxBisect’s sharing of per-core buffers, by quickly moving
them around between Bx rings as needed, enables a small I/O working set that can
nevertheless accommodate the needs of each individual core, even when much of the
network load is mostly directed at it.
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workload application NIC improvement
interface throughput latency

balanced network address translation shRing 25% 25.0x
balanced network address translation rxBisect 24% 25.0x
balanced load balancer shRing 20% 11.1x
balanced load balancer rxBisect 20% 11.1x
overloaded core synthetic network function shRing -58% N/A
overloaded core synthetic network function dynamic shRing 0% N/A
overloaded core synthetic network function rxBisect 11% N/A

Table 1.5: Main shRing and rxBisect evaluation results. The workload is 200 Gbps that
is either balanced among all cores or split between one overloaded core receiving 1 Gbps
with the other 199 Gbps are balanced between the remaining cores. All approaches
work well for balanced workloads. When a core is overloaded, shRing performance
degrades according to how slow is the overloaded core. Dynamic shRing overcomes
this by heuristically switching to the baseline. In contrast, rxBisect achieves line-rate
speed even when cores are overloaded.

The rxBisect prototype we evaluate implements the hardware side of rxBisect by
means of software emulation (§6.2), as a full implementation would require changing
the NIC ASIC. Our implementation dedicates a single core that emulates an rxBisect
NIC by consuming packets from the real NIC and producing them to packet-processing
cores using the rxBisect protocol. This “software rxBisect NIC” runs on a separate
NUMA node from the one housing the processing cores, packet buffers, and the hard-
ware NIC. Our emulated system thus enjoys the benefit of DDIO in the same way a
real non-emulated system would.

We compare our emulated rxBisect to bare metal implementations (without emu-
lation) of the privRing and shRing designs. Despite penalizing only rxBisect with the
cost of emulation, our evaluation with dual 100 Gbps NICs (§6.3) shows that rxBisect
improves network function (NF) throughput by up to 20% and reduces latency by up to
11x compared to default-sized per-core rings. We also show that rxBisect performs well
where shRing struggles, including outperforming the “dynamic shRing” that reverts to
standard per-core rings when workload conditions are unfavorable for shRing.

Table ?? summarizes the main evaluation results from shRing and rxBisect: they im-
prove performance similarly when traffic is balanced, but only rxBisect performs well
when cores are overloaded. We remark that shRing shows even greater improvements
in throughput and latency with 190 Gbps balanced workload.



Chapter 2

The Benefits of General-Purpose
On-NIC Memory

We propose to use the small, newly available on-NIC memory ("nicmem") to keep pace
with the rapidly increasing performance of NICs. We motivate our proposal by accel-
erating two types of workload classes: NFV and key-value stores. As NFV workloads
frequently operate on headers—rather than data—of incoming packets, we introduce
a new packet-processing architecture that splits between the two, keeping the data on
nicmem when possible and thus reducing PCIe traffic, memory bandwidth, and CPU
processing time. Our approach consequently shortens NFV latency by up to 23% and
increases its throughput by up to 19%. Similarly, because key-value stores commonly
exhibit skewed distributions, we introduce a new network stack mechanism that lets
applications keep frequently accessed items on nicmem. Our design shortens mem-
cached latency by up to 43% and increases its throughput by up to 80%.

2.1 Superflous Data Movement

To motivate the benefit of nicmem for “data movers,” network applications that move
unchanged data to its destination exclusively based on the associated metadata, we
focus on two types of data mover workloads: network function virtualization (NFV)
applications and key-value stores (KVS). In this section, after we discuss these work-
loads in more detail (§2.1.1), we exemplify the latency cost that they pay due to super-
fluously moving data from NIC to host memory and back (§2.1.2). We then enumerate
system bottlenecks triggered by this superfluous activity (§2.1.3), and highlight why
direct data I/O (DDIO) caching technology cannot eliminate this problem (§2.1.4). Fi-
nally, we present the technological trends behind on-NIC memory (§2.1.5).

2.1.1 Data-Mover Workloads

NFV A lot of effort has been put into studying NFV [47, 132, 135, 145–149]. In this
class of applications (called “network functions” or NFs), flexible software and off-the-
shelf hardware replace rigid proprietary network equipment. Common NFs include

19
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firewalls, virtual private networks (VPN), deep packet inspectors (DPI), routers and
forwarders, network address translators (NAT), load balancers (LB), flow monitors,
and rate limiters. Aside from VPN and DPI, all the above NFs are data movers, operat-
ing on metadata only (packet headers and per-flow state) before delivering the packets
to their next destination. NAT and LB are two particularly important data movers: a
study of data center NFs showed that up to ≈60% of total traffic goes through one or
both [150]. As end-to-end encryption prevails, NF access to packet payload is dimin-
ished, making data movers more important [151, 152].

KVS Key-value stores like Memcached [48] and Redis [49] underlie key cloud and
data center infrastructures and drive much of their network traffic [153,154]. Significant
research effort has thus been dedicated to improving them, both in software [63,75,76]
and in hardware [155–157]. “Get” KVS operations are data movers: clients send keys
(metadata) and servers return the matching values (data). KVS access patterns are
commonly highly skewed [58–60], so improving the performance of a small set of hot
key-value pairs can improve overall performance significantly.

Importantly, in this work, we use the term KVS more broadly than typical, also
associating it with such applications as web servers (like Apache [158]) when serving
static files.

2.1.2 Latency Cost

In high-throughput workloads, when traffic approaches line rate, we show that su-
perfluous data movement between NIC and host memory causes systems to bottle-
neck (§2.1.3). But superfluous movement is also disadvantageous in underloaded, non-
bottlenecked conditions, because it increases latency.

To illustrate, Figure 2.1 (left) shows the latency breakdown of Data Plane Devel-
opment Kit (DPDK) ping-pong [61], which sends 64B and 1500B (MTU) packets over
the ICMP protocol back and forth between two machines. The first bar (“host”) corre-
sponds to the baseline system, which delivers entire packets to host memory, whereas
the second bar (“nic”) corresponds to storing payloads in nicmem. The third and fourth
bars respectively add the header inlining (“inl”) optimization, storing headers in NIC
rings as outlined in §2. For 1500B packets, nicmem shortens latency by 8% and 15%
without and with inlining. For 64B packets, latency is shortened by 19% due to inlin-
ing only (nicmem does not play a part as the entire packet is inlined).

Observe that 64B latency is improved by our optimizations (19%) more than 1500B
(15%), which is counterintuitive, as 64B benefits from only inlining, whereas 1500 also
benefits from nicmem. We hypothesize that this happens because packet-splitting oc-
curs only for 1500B, requiring software to process two ring entries when sending and
receiving. We corroborate our hypothesis by repeating the ping-pong experiment using
RDMA unreliable datagram (UD) [62], as RDMA rids software from having to handle
headers. Figure 2.1 (right) shows that in this case the benefit for 1500B is indeed greater.
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Figure 2.1: Superfluous data movement between NIC and host memory degrades
performance even in underloaded conditions.

2.1.3 Bottlenecks

When high-throughput applications stress the network subsystem, the superfluous
data movement we identify can bottleneck the three main components that are in-
volved in accommodating this traffic: NIC, PCIe interconnect, and host memory. To
exemplify, we run the DPDK Layer-3 forwarding benchmark (called l3fwd [159]) under
three gradually intensifying setups configured to forward 1500B packets. The l3fwd
server machine is connected back-to-back to a single client load generator machine run-
ning the Cisco T-Rex load generator [160]. Full details of our evaluation setup appear
in §2.4.1.

NIC The first experiment utilizes a single core driving a single 100 Gbps NIC. The av-
erage results are shown in Figure 2.2 (top), which depicts: (i) throughput; (ii) roundtrip
latency; (iii) idle CPU cycles (“idleness”); (iv) PCIe bus traffic flowing from NIC to
hostmem as observed by the NIC, expressed as percentage out of the maximal PCIe
bandwidth available to the NIC, which is 125 Gbps (“PCIe out”); (v) PCIe traffic in the
opposite direction (“PCIe in”); (vi) number of occupied Tx ring entries, as measured by
the CPU whenever it enqueues packets, expressed as percentage of the ring size, which
is 1024 (“Tx fullness”); and (vii) host DRAM bandwidth as measure by Intel pcm [161]
(“mem bw”). We measure NIC PCIe utilization with NVIDIA NEO-Host [162].

Examining Figure 2.2 (top), we see that the baseline system is unable to achieve
line rate (Fig. i), and that is suffers from high latency (Fig. ii) due to two bottlenecks:
PCIe (Fig. iv) and Tx fullness (Fig. vi). We focus on the latter as it is unique to one
core/ring processing and has been observed by others attempting to achieve one core/ring
100 Gbps [163–165]. We also remark that single ring bottlenecks are not unique to NICs
as we also observe similar issues in NVMe SSDs.

When l3fwd tries to transmit packets that it just processed only to find that the Tx
ring full, it drops the packets, which is why it is unable to achieve line rate. We know
that the NIC is fast enough to sustain 100 Gbps line rate, so the question is: why is
the NIC failing to consume Tx ring entries fast enough and thus causing the Tx ring to
reach 100% fullness? NVIDIA performance engineers helped find the answer.

The NIC’s transmit engine gathers packets from Tx ring r over PCIe to stream them
via the outgoing wire. PCIe is speedier (has higher throughput) than the wire, so r’s
packets accumulate in an internal NIC buffer b, until unavoidably b gets full. The NIC
then reacts by de-scheduling transmission from r for a timeout duration of t, which, for
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Figure 2.2: Bottlenecks triggered by superfluous traffic between NIC and host memory
when running DPDK l3fwd.

reasons outside our scope, is set to be proportional to how long it takes to read another
byte from r (≈PCIe roundtrip). The NIC assumes that other Tx rings will keep it busy
during this timeout. But no such rings exist in our setup, and t is longer than b’s drain
time, so the NIC is left with no work, even though packets are awaiting in r. From the
CPU perspective, the NIC appears to temporarily stop transmitting, causing r to fill up
as observed. Nicmem does not suffer from this problem because for it b contains only
headers, so the NIC has a lot more packets to send during t.

PCIe The results of our second experiment are shown in the middle of Figure 2.2.
Here, we use two cores (and hence two rings) instead of one. As expected, this elim-
inates the NIC bottleneck, allowing the baseline to achieve 100 Gbps. The bottleneck
that remains is PCIe outbound, which is 99.8% saturated. NIC PCIe out operations are
thus stalled and increase latency considerably (Fig. ii), and packets get discarded. We
verified that PCIe out is indeed the bottleneck to blame by curbing the client to de-
liver 90 Gbps, which reduced server PCIe out bandwidth somewhat and resolved the
problem.

Nicmem does not exhibit the problem, consuming much less PCIe traffic because
packet payloads do not traverse it.

We remark that PCIe out exceeds PCIe in because transmitted packets and asso-
ciated Tx ring entries are easier to batch than incoming packets and associated com-
pletions. Each PCIe transaction incurs some overhead in the form of PCIe headers.
With batching, one PCIe transaction handles multiple descriptors, thus batching re-
duces PCIe link utilization.

Host Memory Our third experiment resulted in the bottom row of Figure 2.2. Here,
we use eight cores to handle double the throughput, utilizing two 100 Gbps NICs in-
stead of one in both the client and the server. Additionally, to approximate a memory
intensive NF, we configure l3fwd to perform 250 random memory reads per packet
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from a 8 MiB buffer. Although the baseline system offers an incoming load of 200 Gbps,
the server is able to accommodate only≈170 Gbps from it (Fig. i) with high latency (Fig.
ii). This performance drop is caused by running out of DRAM bandwidth (Fig. vii), as
the NIC reads and writes payload data that compete with the NF’s memory activity,
which prolongs its per-packet processing time. (Later, in Figure 2.5, we show that less
than 10 per-packet memory reads are enough to bottleneck DRAM.) Nicmem does not
suffer from these problems.

2.1.4 DDIO Limitations

The bottleneck resource of applications that exhibit poor memory locality is DRAM [166,
167]. As shown above, I/O-intensive applications might suffer from the same problem,
because they involve high-throughput direct memory access (DMA) activity performed
by I/O devices—an activity that contends for the same DRAM bandwidth resource [75,
100]. This issue also affects data movers like network functions, which consequently
suffer from lower throughput, longer latency, and higher variability [97–99, 168–170].
The problem occurs even in “balanced” systems whereby, on paper, DRAM capacity
exceeds I/O bandwidth. The reason is that, as memory utilization increases, access
latency likewise increases: linearly at first, and then exponentially when nearing ca-
pacity [97].

Direct data I/O (DDIO) technology [43] can avoid or alleviate the problem, as it
serves DMA reads from the last level cache (LLC) if the data is there, and it allows
DMA writes to allocate up to two LLC ways by default, thereby bypassing DRAM.
The effectiveness of DDIO, however, is inherently limited by LLC capacity dedicated
to DMA writes [97, 171, 172]. Notably, at a fast enough rate, DDIO writes might evict
still-unprocessed packets to DRAM (a.k.a. the “leaky DMA problem”), implying that
for DDIO to be effective, the combined size of the buffers pointed by Rx rings should
not exceed the LLC size dedicated to DDIO allocations [97].

Ideally, a handful of DDIO allocated cache lines would be enough to fit all receive
buffers. However, multi-core packet processing requires a receive ring per core, and
each ring entry must be large enough to store the maximum packet size (1500B). For
example, an 1024-sized ring stores up to 2MiB of payload buffers which is as large as an
entire LLC way on our system. To avoid exceeding DDIO capacity, one may consider
to decrease ring sizes [97].

Unfortunately, one cannot arbitrarily reduce the size of rings to accommodate DDIO
without negative implications, as we show in §4.2.2. To accommodate high I/O rates,
in addition to increasing ring sizes, researchers proposed to increase the number of
LLC ways available for DDIO DMA writes [164,169]. In both cases, the problem is that
I/O and CPU potentially contend for the same LLC resource. Using Nicmem alleviates
this problem.

2.1.5 On-NIC Memory Today

Our proposal hinges on several technological trends: (1) On-NIC memory already exists
to support various NIC functionalities, it just is not available for software use; (2) the
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NIC’s demand for on-NIC memory is limited; and (3) on-NIC memory size can be
increased to support data mover usage.

Many commercial ASIC NICs contain on-NIC SRAM [29, 36, 50–55] to support var-
ious optional NIC offloading, acceleration, and transport functionalities. For instance,
on-NIC memory is used to cache packet steering rules [165, 173]. Due to its current
target use case, on-NIC memory is relatively small. For example, the latest NIC model
of NVIDIA (ConnectX-6Dx) is equipped with 4 MiB of on-NIC SRAM memory. But
this size is dictated by the current use cases, not by technological constraints. NVIDIA
architects acknowledge that it is feasible and cost-effective to increase on-memory NIC
size to several MiBs—roughly, the equivalent of a CPU LLC size—given a compelling
use case.

Moreover, even the limited on-NIC memory is not fully utilized today, because ap-
plications and OSs typically do not enable the advanced NIC functionalities that use
this memory. For instance, NVIDIA usage data indicates less than 15% of on-NIC mem-
ory is typically used.

When adding SRAM we increase NIC die size, each bit cell spans 0.3 µm2 of sili-
con [174] which translates to 0.21 $ per MB at estimated 7 nm process wafer prices [175,
176]. For 16$ (2% of the price of the cheapest 100 GbE NIC, 795$) [177], we can ob-
tain 80 MBs which exceeds the LLC of the most powerful Intel 3rd gen scalable pro-
cessor [178], and can sustain 37 NIC queues with 1024 entries each. Furthermore, we
speculate that SRAM die size and price will decrease as 3D stacking technology unlocks
hundreds of MBs of SRAM [179].

Because it is cost-effective and it simplifies our implementation, we assume nicmem
is as large as CPU LLC. In our design, we show that it is possible to overcome this
limitation (§2.2.1). In our evaluation, we show that even small amounts of nicmem are
useful (§2.4.4).

2.2 Design

We propose to improve the latency and throughput of data mover applications by
equipping ASIC NICs with nicmem, which is on-NIC memory (SRAM and/or DRAM)
that the NIC exposes for use by data movers to hold their data, and thereby improve
latency, save host memory bandwidth, and reduce DDIO/LLC contention.

We describe the required NIC hardware changes in §2.2.1. We then demonstrate
nicmem’s utility by designing nicmem-based systems for accelerating NFV and KVS
applications (§2.2.2).

2.2.1 Nicmem Hardware

At a high-level, the nicmem design consists of providing large on-NIC SRAM, which
is partitioned into two regions. Most of the SRAM is called nicmem and is exposed
to software, allowing data mover applications to use it for data storage and thereby
accelerate data transfer. The rest of the SRAM is not exposed to software and is used
by NIC hardware to support various functionalities, as is the case today.
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NIC hardware supports identifying packet descriptors (either Rx or Tx) whose pay-
load is located in nicmem. When writing (Rx) or reading (Tx) such a descriptor’s pay-
load, the NIC directly accesses its SRAM instead of going through the PCIe intercon-
nect. This mechanism allows data movers to reap nicmem benefits via pure software
techniques, by allocating their payloads on the nicmem and thus avoiding hostmem
and PCIe traffic for data transfers (as we demonstrate in §2.2.2).

Using nicmem for Rx traffic poses a challenge, however: because nicmem is limited,
it may not suffice to hold large packet buffer pools, which are required to support
bursty and/or high-throughput traffic. To address this, we design a split Rx queue
mechanism, in which the NIC can use a secondary Rx queue, located in hostmem, to
absorb Rx traffic when nicmem resources are exhausted.

In the following, we describe the design in more detail.

Exposing nicmem NIC firmware carves out a portion of the on-board SRAM and
isolates it from the internal NIC functionalities. This step takes place after the NIC
driver has initialized and configured all desired NIC functionality, to ensure that all
SRAM resources needed for NIC operation are available. The firmware then exposes
the nicmem as a memory mapped I/O range on the NIC. The OS identifies this range as
a nicmem through the NIC capabilities and makes it available to applications through
the mmap system call interface. Applications can then map nicmem regions into their
address space and subsequently access it through CPU load/store instructions that get
routed to the nicmem over PCIe. Since the OS intermediates nicmem mapping, it can
restrict different applications to disjoint nicmem ranges. Applications can also register
mapped nicmem address regions with the NIC and then use it through NIC queue
descriptors. Similarly to the CPU, because NIC hardware interposes between queues
and registered nicmem, it can control the access to disjoint nicmem ranges.

Identifying nicmem The benefit of nicmem is that the NIC can access it without go-
ing out to the PCIe interconnect. To reap this benefit, the NIC must identify when
packet descriptors (created by software) have their payload located in a nicmem ad-
dress. This is achieved by software setting a flag in the descriptor, which tells the NIC
that the address corresponds to a nicmem address.

Receiving traffic into nicmem Typical NIC receive flow (§4.1) makes it challenging
to use nicmem for Rx traffic. Since nicmem size is limited, at high networking rates it
might not suffice to hold a burst of incoming traffic. As a result, an Rx ring containing
only nicmem buffers may become empty during such a burst, leading to packet drops.

To address this problem, we propose to employ a split rings mechanism, which is
inspired by network page faults [27]. In this design, NIC receive rings are split in two:
primary and secondary receive rings. When a packets arrives, the NIC tries to con-
sume a buffer from the primary ring, which holds nicmem buffers. If the primary ring
is empty, the NIC proceeds to consume a buffer from the secondary queue (Figure 2.3).
Completion entries are stored in a single queue, as before, but with the entries indicat-
ing the order and location of received packets, i.e., primary or secondary ring. Packet
buffers are subsequently returned by software to their original ring.



26

is primary 
empty?Packet

arrives

Yes

No
NIC memory

host memory
Store in
primary

Store in
secondary

Figure 2.3: The split rings approach.

(b) nicmem

payloadheaderRx ring Tx ring

1

2

3

(a) host mem

2

1 3

(c) nicmem + inline

1

2

3

h
o

st
 

m
em

P
C

Ie
N

IC

nicmem nicmem

Figure 2.4: Host memory based packet
transmission compared to data on nicmem
with and without header inlining.

The split rings approach guarantees that as long as the working set of incoming
packets is smaller than the nicmem size, then all received packets are served by nicmem
from the primary ring. The split rings design introduces only negligible latency to the
NIC’s receive pipeline, since checking ring occupancy is based on ring producer and
consumer indexes that are stored on nicmem. It does, however, double the number of
queues in the system, but we believe that this overhead is acceptable because per-queue
state is very small.

Beyond SRAM Nothing in the above design is SRAM-specific. Indeed, nicmem can
be extended with DRAM to provide value for applications with memory demands be-
yond those that can be satisfied by SRAM. On-NIC DRAM is faster for the NIC to access
compared to host DRAM, as it can be accessed without a CPU interconnect trip.

2.2.2 Leveraging Nicmem in Data Movers

To improve performance using nicmem, software must navigate the trade-off that nicmem
is fast for the NIC to access but slow for the CPU to access, as CPU accesses are routed
over the PCIe interconnect to the NIC. We thus observe that data mover applications
can significantly benefit from nicmem. A data mover can use nicmem to hold its data
and rely on hostmem only for the metadata. This approach saves the CPU cycles and
memory bandwidth that would otherwise be required to transfer the data to/from the
network from/to hostmem.

In the following, we describe designs that use the above idea to accelerate NFV (§2.2.2)
and KVS (§2.2.2) applications. Our designs assume that the application can safely ma-
nipulate NIC Rx/Tx rings directly and does not require OS intervention to send/re-
ceive traffic. This is the case, for example, in applications using DPDK which offers a
packet processing programming model that is based on kernel bypass and direct hard-
ware access for efficiency.

NFV Acceleration (NmNFV)

Our design for accelerating NFV data movers with nicmem is named nmNFV. NmNFV
mitigates memory bandwidth, DDIO and LLC contention caused by copying of packet
payloads into hostmem for NF operations, as shown in Figure 2.4(a). Without nicmem,
each incoming packet is (1) DMAed to hostmem by the NIC, (2) operated on by the
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NF; and finally (3) transmitted, which requires the NIC to read the header and payload
from hostmem with DMA again. Crucially, however, packet payloads are completely
ignored by most NFs. The waste of copying payloads into hostmem is compounded by
the fact that payloads are typically an order of magnitude larger than headers: network
traffic characteristics studies show that packet sizes in data centers, universities, and
on the Internet follow a bimodal clustering pattern around small ≈ 200 B and large
≈ 1400 B packets [180–184].

The basic idea of nmNFV is thus to simply keep packet payloads on the nicmem.
To realize this idea, we use several techniques.

First, we rely on the pre-existing capability of the NIC to write an incoming packet’s
header and payload into different buffers [52,56,57]. NmNFV uses this packet-splitting
functionality to configure the Rx ring with Rx descriptors that instruct the NIC to write
headers into hostmem and payloads into nicmem (Figure 2.4(b)). Consequently, when a
packet arrives, its payload remains on the NIC. Only the header is written to hostmem,
which suffices for the NF to perform its operation. Finally, on transmit, the NIC already
has the packet’s payload in nicmem.

The trade-off in splitting packet headers and payload is that it introduce some over-
head to packet processing. The NIC’s Rx/Tx rings require twice the number of scatter-
gather elements to hold the same number of packets. Not only does it increase the
ring’s size, but it increases the number of scatter-gather operations the NIC must per-
form per packet. Moreover, these two pointers must propagate from the application
level, which means that book-keeping structures increase in size and more CPU work
is required to construct them.

To address this overhead and to further optimize the NF flow, we propose to store
a packet’s header in its descriptor instead of in an independent hostmem buffer (Fig-
ure 2.4(c)). We call this optimization header inlining. It leverages pre-existing NIC inlin-
ing functionality by which descriptor flags can instruct the NIC to read/write a small
range of packet data from/to the descriptor. Header inlining reduces the number of
scatter-gather entries required to represent a packet back to one (for the payload). More
importantly, it enables the NIC to fetch only the descriptor when sending/receiving
data. This optimization thus reduces both the amount of data fetched from hostmem as
well as the number of PCIe roundtrips required to do so, because in the non-optimized
case the NIC must first read the descriptor in order to obtain the header’s address in
hostmem.

Header inlining does require an NF to copy the packet’s header from its Rx to its
Tx descriptor, but the related CPU overhead is low, because the headers are hot in the
cache following the NF’s processing of the header.

KVS Acceleration (NmKVS)

In theory, a KVS could leverage nicmem by serving its item set from nicmem. The
KVS would store the values (data) associated with the keys (metadata) in nicmem and
each read request would be answered with a response whose payload is in the relevant
item’s nicmem. This approach is not viable in general, however, because the size of
KVS item sets are as large as host DRAM [185,186], which dwarfs the size of the multi-
MiB nicmem.
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We address this problem by leveraging the property that KVS workloads are com-
monly skewed, exhibiting a Zipf distribution [58–60]. We therefore propose nmKVS,
which is a KVS design that stores a subset of hot items on nicmem and serves them
from it. Our design focuses on the mechanism of serving hot items out of nicmem and
not on identifying hot items in the first place. That is, we assume that a KVS can effi-
ciently identify the hottest items—e.g., using a heavy hitters algorithm [187–189]—and
move them to nicmem, while evicting “colder” items back to hostmem.

NmKVS relies on header-data splitting (§2.2.2) to perform zero-copy sends of val-
ues residing on nicmem. The basic idea is straightforward, but it creates a concurrency
challenge. Suppose that a response containing an item is posted to the NIC’s Tx queue,
but has not been transmitted yet. In the meantime, the KVS receives an update oper-
ation of that value and the CPU starts overwriting the old value. Because the value is
updated in place, if the NIC now begins transmission of the queued response packet, it
might read (and transmit) an inconsistent mix of the old and new values, since it reads
the value concurrently to the CPU updating it.

We handle this race by avoiding in-place data overwrites for “hot” items served
directly (zero-copy) from nicmem. Instead, we maintain two buffers for each such
item. One buffer, called the stable buffer, resides in nicmem and holds data that may be
transmitted by the NIC. This buffer is guaranteed to not be overwritten concurrently to
a NIC access. The second buffer, called the pending buffer, holds new data written by
an update operation. After an update overwrites the pending buffer, it invalidates the
stable buffer by clearing a “valid” bit in its structure. The stable buffer gets updated
later, lazily, by some get operation.

To safely update the stable buffer, its structure contains a reference count indicating
the number of outstanding Tx descriptors referencing it. The KVS services a get oper-
ation for a “hot” item as follows. If the stable buffer is valid, the KVS increments its
reference count and uses the stable buffer as the response packet’s payload (zero-copy).
(The reference count is decremented when processing the NIC’s completion event of
this packet’s transmission.) If the pending buffer is invalid, the KVS checks whether its
reference count is zero. If so, the KVS overwrites the stable buffer with the contents of
the pending buffer, and transmits a zero-copy response, as before. Otherwise, the KVS
transmits a response whose payload is a copy of the pending buffer.

2.3 Implementation

We elaborate on nicmem system software and hardware, and describe our implemen-
tation of nmNFV and nmKVS in the DPDK framework, targeting NVIDIA ConnectX
NICs.

Kernel API Hardware exposes nicmem to the kernel which manages its allocation to
processes using Linux RDMA verbs APIs. Processes obtain nicmem by: (1) requesting
the kernel for an allocation of the desired length; and (2) calling mmap to map it to virtual
memory using write-combined memory pages. Using virtual memory nicmem can be
shared or isolated between different processes in the system.
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DPDK API To expose nicmem to DPDK applications, we introduce a new API for
DPDK NICs (Listing 2.1): alloc_nicmem and dealloc_nicmem allocate and free NIC
memory, respectively. Applications manage this memory using standard DPDK mem-
ory allocator APIs such as packet memory buffer pools.

NVIDIA NICs use an on-NIC IOMMU to translate all memory accesses and isolate
between applications. To use memory with the NIC it must be registered with the
kernel to create a memory key (mkey) that is associated with the application. Then,
to send or receive data via application NIC queues, the mkey is provided alongside
memory addresses. Nicmem references use an mkey too. Therefore, nicmem is isolated
from other application using the NIC.

When DPDK posts receive or transmit descriptors on NIC queues, the driver looks
up the mkey corresponding to packet buffer memory. Host-memory usually requires
only one mkey while nicmem requires another. To optimize these lookups the drivers
caches the most recently used mkeys in order; this optimization is weakened when
splitting packets when two mkeys are used per-packet.

NmNFV We implement nmNFV in the DPDK l3fwd [159] application and in the
modular FastClick [116, 190] NF composition framework. Our implementation closely
follows the nmNFV design. After allocating and mapping nicmem, the NF creates a
packet buffer pool on top of nicmem. Next, it configures receive rings to split packets
at a 64B offset into header and data buffers residing in hostmem and nicmem buffer
pools, respectively, and to inline the headers. Split packets consist of two DPDK mbuf
structures chained together: one that holds the header and another that points to the
data which is either in hostmem or in nicmem.

Importantly, all changes related to nicmem are in DPDK’s control-path, which means
that application data-path operations are unmodified. As a result, we expect applica-
tions which follow DPDK APIs to adopt our approach easily and with no risky modi-
fications to performance critical code. However, we find that some DPDK applications
ignore DPDK’s APIs and make assumptions about packet buffer structure. In particu-
lar, we observed that FastClick accesses packet buffers directly and assumes that there
is only one buffer per mbuf. Therefore, we modify its data-path elements to support
our split packets.

NmKVS We implement nmKVS on top of MICA [63], a highly optimized DPDK-
based KVS that is built to achieve the highest performance on CPUs [191]. However,
MICA get operations do copy item data twice: once from the KVS table to the stack and
again from the stack to the response packet. We speculate that the reason behind this
implementation is that copy semantics greatly simplify the design and implementation
of the system and/or that it was forced by missing DPDK features, such as a callback
upon completion of a packet transmission. Our implementation extends DPDK to sup-
port these features.

Our nmKVS implementation modifies MICA to serve a set of hot items directly
from nicmem with the zero-copy design described in §2.2.2. We allocate stable buffers
for hot items according to available nicmem and use memcpy to overwrite values on
nicmem as needed. We additionally introduce a DPDK callback on transmit completion
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void * alloc_nicmem ( device , len ) ;
void dealloc_nicmem ( addr ) ;

Listing 2.1: routines to control NIC memory

to decrement the stable buffer’s reference count. Such a callback was not available in
DPDK before, and so we modify DPDK and NVIDIA drivers to support it.

Hardware limitations Available hardware imposes some limitation on our imple-
mentation. First, our NIC firmware exposes only 256 KiB of its available SRAM. Sec-
ond, our NIC requires hardware modifications to support the split rings approach. To
overcome these and support real applications, we emulate a large nicmem by reusing
the provided memory buffer for storing the data of multiple packets, which thus over-
ride each other. This methodological technique works as data mover applications and
benchmarks do not inspect their payloads. We verified that this methodology does
not affect performance by observing no measurable difference in DPDK l3fwd perfor-
mance with and without reusing nicmem on the available hardware. Third, our NIC
also supports only transmit-side inlining, and therefore we still suffer the cost of split-
ting on receive. Finally, our NIC does not split packets according to hardware parsing
which restricts us to use suboptimal hard-coded header split offsets. We expect that
future devices will remove this limitation.

Implementation effort To support NIC memory we change 404 lines of code (LoC) in
DPDK 20.08 NVIDIA’s driver; and 329 LoC in PCIe and Ethernet device infrastructure
code. For nmNFV, we modify 194 LoC in FastClick’s DPDK binding, and another 25
LoC to support split packets in IP, TCP, and UDP element code. NmKVS support in
MICA relies on transmit completion callbacks (64 LoC), zero-copy support (282 LoC),
and nicmem support (125 LoC).

2.4 Evaluation

We use microbenchmarks and macrobenchmarks to evaluate nicmem performance for
KVS and NFV workloads. After introducing our methodology (§2.4.1), we evaluate
NF performance with a syntactic microbenchmark (§2.4.2) and then real NF applica-
tions: network address translation (NAT) and load-balancer (LB). Based on these, we
quantify the number of cores required to saturate 200 Gbps and measure the impact of
various packet and NIC receive ring sizes and DDIO way allocations (§2.4.3). We then
measure the impact of split-ring spilling to hostmem by varying the nicmem available
in NAT and LB NFs (§2.4.4). We next measure the cost of accessing nicmem from the
CPU (§2.4.5) and quantify KVS performance using nicmem (§2.4.6).

2.4.1 Methodology

Our setup consists of a pair of Dell PowerEdge R640 servers, one of which is the system
under test and the other is the load generator. Both have 16-core 2.1 GHz Xeon Silver
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4216 CPUs, 128 GiB (=4x16 GiB) 2933 MHz DDR4 memory, 22 MiB LLC split across
11 ways. They run Ubuntu 18.04 (Linux 5.6.0) with hyperthreading and Turbo Boost
off. The machines are connected back-to-back via two 100 GbE NVIDIA ConnectX-5
NICs [29]. All the results presented are trimmed means of ten runs; the minimum and
maximum are discarded. The standard deviation is always below 5%.

NF Benchmarking On the load generator machine, we run the stateless Cisco T-Rex
packet generator [160], which we modify to improve latency measurement accuracy
from 10-100µs to 1µs (similarly to Primorac [192]). Unless stated otherwise, we send
packets at 200 Gbps using our two NICs.

For macrobenchmarking, on the server, we run FastClick [116] based NAT and LB
using FastClick’s DPDK mbuf pool to avoid unnecessary packet metadata copies. Un-
less stated otherwise: we disable pause frames; use 1024 Rx and Tx ring descriptors
(default); two DDIO LLC ways (default); and 14 cores (as our experience with NAT
and LB shows that 14 cores are needed to process 200 Gbps; see Figure 2.6). To maxi-
mize CPU efficiency and reach line rate speeds, we spread load equally among all cores
using a different flow per packet. We use large 1500B UDP packets unless stated oth-
erwise, as this is a common use case (§2.2.2), and because it helps us sustain 200 Gbps
processing on our setup, which generates the highest load on PCIe, DDIO, and memory
bandwidth.

We evaluate the following NF processing configurations: (1) “host” employs the
baseline DPDK host memory; (2) “split” demonstrates the overhead introduced by
splitting packet headers and data (before reducing host memory copies); (3) “nmNFV-
” improves performance by placing data on nicmem, thus removing data copies; and
(4) “nmNFV” further improves it by inlining headers inside Tx descriptors.

As in §2.1.3, we measure NIC PCIe utilization using NVIDIA NEO-Host [162] and
CPU core and unncore counters using Intel pcm [161].

KVS Benchmarking We evaluate the performance of nmKVS using MICA [63] exe-
cuting on 4 cores. MICA’s client is the load generator, using 800K large key-value pairs
(128B keys and 1024B values), which we access uniformly at random. As noted, large
values ease CPU processing and are common in real workloads [58, 185]. We evalu-
ate two server configurations: (C1) 256 KiB hot area cache that corresponds to the size
of nicmem available on our NICs, and (C2) 64 MiB hot area corresponding to a future
device that we emulate (§2.3).

2.4.2 NF Microbenchmarks

We use a synthetic NF to explore how memory subsystem contention affects CPU ef-
ficiency and, in turn, the throughput and latency of NFs with different attributes. To
control NF memory intensity we run layer-2 forwarding followed by the WorkPackage
FastClick element, which performs a number of random memory reads from preallo-
cated buffers. We perform 480 runs, covering the space of the following parameters:
Rx ring size: 256, 512, 1024, or 2048; accessed memory buffer size: 1, 2, 4, 8, 16, or 32;
memory reads per packet: 2, 4, 6, 8, or 10; and DDIO ways: 0, 2, 8, or 11. For each NF
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Figure 2.6: To handle 200 Gbps loads NAT and LB need (1) at least 12 cores and (2) to
reduce memory and PCIe load.

processing configuration, we plot the missing throughput (200Gbps - measured) and
latency of all 480 runs in a scatter-plot in Figure 2.5.

After considering various parameters that may influence performance, we find that
NF processing time per packet is most meaningful. We then calculate the per-core
budget and mark it as the “cutoff” point. We use 14 cores with frequency 2.1 GHz, and
packet arrival rate of 16.26 MPPS: (14× 2.1× 109)/(16.26× 106) gives us a budget of
1808 cycles per packet before the cutoff point. We observe that in the host configuration,
which has to copy packet data to memory, this point is passed for at least 46% of the
NFs. Meanwhile, nmNFV only passes its cutoff point for at most 16% of these same
NFs.

We mark runs with less than 30 GB/s memory bandwidth with “+” and the rest
with “x”. We observe that both nmNFV variants eliminate memory bandwidth con-
tention (all are below 30 GB/s), while base and split suffer from the leaky DMA prob-



33

RX descriptors (#)

L
B

nmNFV- nmNFV split host

16
64

256
1024
4096

32 128
512
2K

i

140
160
180
200

32 128
512
2K

i

0
20
40
60
80

100

32 128
512
2K

i

0

20

40

60

32 128
512
2K

i

0
20
40
60
80

100

32 128
512
2K

i

0
20
40
60
80

100
32 128
512
2K

i

N
A

T
(a) latency

[µs]

16
64

256
1024
4096

(b) throughput
[Gbps]

140
160
180
200

(c) PCIe out
load [%]

0
20
40
60
80

100

(d) memory
bw [GB/s]

0

20

40

60

(e) cache
hit rate [%]

0
20
40
60
80

100

(f) PCIe
hit rate [%]

0
20
40
60
80

100

Figure 2.7: Small receive ring size can alleviate memory bandwidth bottlenecks, in-
creasing throughput. But, these are susceptible to packet loss during bursts.

lem and high memory bandwidth contention: at least 60% of runs have more than
30 GB/s memory bandwidth, and in fact at least 31% exceed 40 GB/s. Consequently,
both nmNFV variants have as much as 42% more runs within the cutoff budget. Pleas-
ingly, the majority of both nmNFV variants results below the cutoff also have better
throughput and latency.

As expected, the results also show that nmNFV consumes more cycles than nmNFV-
and thus performs slightly worse when CPU cycles are scarce. However, this is part
of a trade-off: nmNFV has better 99th percentile tail latency compared to nmNFV-,
i.e., 58% of nmNFV runs are lower than 128 µs compared to only 40% in nmNFV- (not
shown).

We observe that when cycles per packet are greater than the budget, workloads with
the same cycles per packet still show different latencies. Furthermore these latencies
can be grouped into four clusters that correspond to the various Rx ring sizes (256, 512,
1024, and 2048). The reason is that once an NF exceeds the budget it will never process
packets before more packets build up in its Rx ring. Therefore, receive rings are always
full and each packet will wait until all preceding packets in the ring are processed, thus
latency increases with ring size.

2.4.3 NF Macrobenchmarks

We use two stateful NFs to evaluate the performance of both nmNFV variants: LB and
NAT using 200 Gbps. These applications cache up to 10 M flows using a per core cuckoo
hash table to avoid needless cache contention. LB assigns each flow, using its 5-tuple, to
one of 32 destination servers, and stores this pairing to consistently hash and forward
subsequent packets of that 5-tuple to the same server. If no match is found, LB uses
round-robin to assign a new destination server to the flow. Similarly, NAT identifies
existing flows using their 5-tuples and rewrites packet source IP and port consistently.
New flows are assigned one of the available source ports.

Next, using 200 Gbps and 1500 B packets, we measure the number of cores required
to meet this load, and the impact of various packet and NIC Rx ring sizes and DDIO
ways.
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Figure 2.8: Our approach enables efficient 200 Gbps processing for large packets.
Small packet workloads are always CPU bound.
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Figure 2.9: A system with DDIO disabled and nicmem enabled outperforms the same
system with maximum DDIO and no nicmem.
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Figure 2.10: Performance with real packet trace from CAIDA.

Cores Figure 2.6 shows the results for LB and NAT scalability from 2 to 14 cores.
Host and split fall short of reaching line rate throughput and as a result their latency
increases with the number of cores. The reason is DDIO thrashing of the LLC due to
the leaky DMA problem. The DDIO hit rate declines and memory bandwidth increases
as we increase the core count.

Both nmNFV variants, in contrast, achieve line-rate throughput at 12 and 14 cores
for LB and NAT, respectively. When approaching line-rate, improvements manifest
in reduced latency. As expected, both variants improve PCIe hit rate, PCIe outbound
utilization, memory bandwidth, and CPU cache hit rate. We remark that split and
nmNFV- use two scatter-gather entries compared to one for nmNFV and host, and as
result their performance is lower.

Real trace We repeated the experiment above with the first million packets from a
2019 real-world CAIDA packet trace form the Equinix NYC monitor [182]. The trace
we used contains 43261 unique source IPs and 58533 unique destination IPs with an
average packet size of 916 bytes (small and large packet clusters). Figure 2.10 presents
the results. Due to limitations in our load generator (T-Rex), we cannot measure latency
so we focus on throughput. Both nmNFV- variants outperform base by up to 28%. The
results are similar to Figure 2.6 with lower throughput for all as small packets increase
the load on the CPU without benefiting from nicmem.

Rx Descriptors To examine the performance impact of growing Rx ring sizes, which
are necessary to handle packet bursts (see §2.1.4), we measure the performance with
Rx ring sizes between 32 and 4096 (Figure 2.7). We observe that increasing ring size
decreases throughput by up to 15% and 20% for LB and NAT, respectively. Latency
grows exponentially as LB and NAT fail to meet the offered load at 256 and 128 Rx
descriptors, respectively. This is preceded by a sharp decline in PCIe hit rate, as the
total Rx ring buffers exceed available LLC space for DDIO: 256× 14× 1500 ≈ 5 MiB >

4 MiB available to DDIO. Interestingly, host and split NAT performance diminishes
before exceeding DDIO LLC capacity. We observe that NAT’s higher LLC access rate
and occupancy are responsible, as NAT uses two cache entries per flow, i.e., one for
each direction and LB uses only one. Base and split application cache hit rate plummets
from 83% to 27% and memory bandwidth grows from 5 GB/s to 55 GB/s, in correlation
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with PCIe hit rate, which reaffirms the importance of LLC locality and low memory
bandwidth to NF performance.

Packet Size Figure 2.8 shows the performance with packet sizes between 64B and
1500B. We observe that for both nmNFV variants throughput and latency is similar or
better than host and split for all packet sizes. Both variants achieve better throughput
for packets larger than 1024 B. Both variants also improve memory bandwidth, PCIe
utilization, and PCIe hit rate for all packet sizes.

DDIO Figure 2.9 shows performance with various DDIO cache way allocations. To
control DDIO cache ways, we use the DDIOTune fastclick element developed by Farshin
et al. [164]. The results show that a system with DDIO disabled and nicmem en-
abled outperforms the same system with maximum DDIO assigned LLC ways and
no nicmem in latency (22 µs vs. 84 µs) and throughput (197 Gbps vs. 195 Gbps).

As expected, adding DDIO ways improves the performance of host and split; host
achieves line-rate at 5 and 9 cache ways for LB and NAT, respectively. We observe
that even though host and split reach line-rate, their latency remains as high as 64 µs,
while the latency of nmNFV- and nmNFV is 26 µs and 22 µs, respectively. Nicmem im-
proves latency due to its lower PCIe utilization, and inlining improves latency further
by avoiding an extra PCIe round-trip to fetch the header.

Curiously, nmNFV- PCIe hit rate is constant at 80% for all DDIO cache way settings.
Meanwhile, nmNFV benefits from 100% PCIe hit rate. This suggests that packet header
buffers are evicted from the cache before they are reused by DDIO; inlining avoids this
problem as it reduces the number of buffers in-use.

2.4.4 Insufficient NIC Memory Capacity

Nicmem capacity changes between devices and it may not suffice to feed all per-CPU
queues and even the split rings approach may spill over data into hostmem queues. We
therefore re-test NAT performance when varying the available nicmem by controlling
the number of nicmem queues.

Figure 2.11 presents the results. We observe that a single nicmem queue (out of
7 in total per NIC) drastically improves latency and throughput as it eliminates the
PCIe bottleneck discussed in §2.1.3. Meanwhile, increasing nicmem queues further
reduces memory bandwidth, DDIO contention, and improves application LLC hit rate
(not shown).

2.4.5 Cost of Accessing NIC Memory

In this section, we compare the cost of CPU access to nicmem in comparison to host-
mem. Figure 2.12 compares the copy rate within hostmem with the copy rate from
hostmem to nicmem, and vice versa. Our experiment measures the throughput of
100 copy iterations within hostmem to the same copy loop with source/destination
in nicmem.

We observe that the results differ greatly between the two. On the one hand, the rate
of copy into nicmem decreases as the source buffer grows in size, from 4.0x for buffers
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Figure 2.12: Cost of copy between host-
mem and nicmem.

in L1 (32 KiB) to 1.0x for non-cached data. On the other hand, the rate of copy from
nicmem to hostmem incurs between 528x and 50x overhead. This is because nicmem is
marked for write-combined caching, which permits the caching of writes, but prevents
the caching of reads.

2.4.6 Key-Value Store

We use two workloads to evaluate nmKVS using 4 cores: 100% get requests (best case
scenario), and various get/set ratios to show the affect of costly nicmem sets.

100% Get Workload Figure 2.13 shows nmKVS performance with 100% get load,
varying the load directed at hot items. This is the best-case scenario, as nicmem is
never accessed directly by the CPU when processing get requests (§2.2.2); response
packet descriptors only reference data in nicmem that the NIC fetches when sending
packets to the wire.

The results show that increasing the portion of requests directed at the hot items
increases the benefit of nicmem, and larger nicmem provides greater benefits. We ob-
serve that (C2) outperforms (C1) for two reasons: (1) the 256 KiB hot area causes an
imbalanced load distribution between the 4 server cores, underutilizing one core, and
(2) the 64 MiB hot area exceeds the size of host LLC and therefore, in this case, host-
mem does not benefit from caching. Overall, nmKVS improves MICA throughput by
up to 21% in (C1) and 79% in (C2), improves latency by 14% in (C1) and 43% in (C2),
and tail latency by 21% in (C1) and 42% in (C2). We also measure unloaded nmKVS
latency using a modified closed-loop MICA client (not shown). We observe analogous
results, nmKVS improves latency and throughput by up to 6% and 19% for (C1) and
(C2), respectively.

We remark that nmKVS improves throughput more than nmNFV while using nicmem
only on transmit. The reason is that MICA must copy data to avoid zero-copy races (§2.2.2),
an overhead we avoid in nmKVS. Meanwhile, in NFV systems, the baseline performs
no copies and therefore the gap is smaller.



38

Requests from hot area (%)

T
h
ro

u
g
h
p
u

t
[M

R
P

S
]

256 KiB hot area

nmKVS hot area hostmem hot area

-1%
3%

9%
13%

21%
17%

0

4

8

12

64MiB hot area

1% 3%
13%

28%
51%

79%

0

4

8

12

L
a
te

n
c
y

[µ
s
] 1%

-3%
-8%

-12%

-18%
-14%

 0
 200
 400
 600
 800

-1%
-4%

-12%

-22%

-33%

-43%

 0
 200
 400
 600
 800

9
9
p
 L

a
te

n
c
y

[µ
s
]

0.0%
-5%

-13%
-18%

-23%
-21%

 0
 200
 400
 600
 800

 1000

0 20 40 60 80 100

0.0%
-6%

-15%
-24%

-35%
-42%

 0
 200
 400
 600
 800

 1000

0 20 40 60 80 100

Figure 2.13: MICA 100% get throughput
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Mixed Workload Figure 2.14 shows the throughput of nmKVS under various get/set
request ratios. Recall that nmKVS sets are more costly as they need to write data in
both hostmem and nicmem to avoid zero-copy races, therefore 100% sets is the worst
case scenario for nmKVS. To show this scenario, we direct all sets to the hot area. We
then consider two types of workloads, one in which all gets are served from the hot
area (best case), denoted “allhit”, and another where all gets go to non-hot area (worst
case), denoted “nohit”. Then, we compare (C1) and (C2) as above.

We observe that the nmKVS is no more than 5% worse in both (C1) and (C2) indi-
cating that most set operations write into non-cached memory, which we confirm by
observing 70% cache misses using 100% sets. In the best case, throughput improves
by up to 23% and 77% for (C1) and (C2), respectively. In (C1), serving gets from hot
hostmem area improves throughput by up to 31%, in contrast to (C2) which performs
the same regardless of whether gets are served from the hot area. This is due to the
larger than LLC hot area in (C2).

2.5 NIC Memory and NFV Acceleration

In this section we contrast our approach to the common use of NIC memory today in
the context of data-mover NFV applications (i.e., NFV acceleration) to show the trade-
off between the two approaches as a function of the number of flows.

Today, in NFV acceleration, NIC memory stores per-flow state, such as packet steer-
ing rules used for NFV acceleration. In particular, products such as NVIDIA ASAP2 [193]
will group packets to flows, apply actions such as count, modify, encapsulate, and de-
capsulae packet headers, and then send packets out (i.e., hairpin); all in ASIC without
software involvement. This approach works best when all per-flow states fit inside
NIC memory, but performance degrades as the number of flows grows. In contrast,
nmNFV NIC memory utilization is independent of the number of flows, and it scales
as well as baseline CPU based NFs while improving their performance.
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Figure 2.15: NFV scalability to large numbers of flows. The labels show the difference
between nmNFV and accelNFV.

To compare the performance of ASAP2 per-flow acceleration with nmNFV, we run
an NF that counts the number of bytes and packets for each flow, while varying the
number of flows. We implement this NF by modifying DPDK’s l3fwd, and run it on
two CPU cores. We also implement and run this NF in NIC ASIC by using DPDK’s
rte_flow match and action rules together with two pairs of queues operated by NIC
hardware in hairpin mode; we call this accelNFV.

Figure 2.15 shows the resulting throughput, latency, CPU utilization, and NIC cache
misses. The figure shows that accelNFV is idle even when processing 100Gbps, as
NIC ASIC processes packets without interfering with the CPU. We also observe that
increasing the number of flows beyond on-NIC memory capacity, increases the time to
process packets as the number of NIC context misses requires fetching and also evicting
contexts to hostmem. When packets are processed too slowly, the Rx ring overflows
causing significant packet loss and increased latency. Increasing the number of rings
would not mitigate this problem, because it does not increase NIC processing speed
through parallelism. In fact, performance will degrade farther as additional rings will
also contend over NIC memory.

2.6 Related Work

Packet inlining Splitting metadata (headers) from data (payload) is known to im-
prove performance via better caching of CPU accessed metadata, and lower read am-
plification from prefetching and DMAing. This idea has been applied to log structured
merge trees on SSDs [194], to sorting data [195], and with small request-response pack-
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ets [196]. The contribution of this work is in combining these techniques with nicmem
to efficiently accelerate data-mover applications.

Header-data split Previous work proposed storing NF packet payload on network
switch memory [197]. Storing payload on nicmem is preferable because the NIC: (1) has
more memory per host; (2) requires no coordination with switches on dropped pack-
ets; (3) allows for CPU offloading (e.g., checksum), which is impossible with switch
parking; and (4) simplifies debugging as compared to switches.

NIC memory in RDMA NIC memory has been used exclusively for RDMA so far [198].
In RDMA, it improves the latency of atomic operations [199], and small message trans-
fers as we demonstrated in §2.1.2.



Chapter 3

Autonomous NIC Offloads

CPUs routinely offload to NICs network-related processing tasks like packet segmenta-
tion and checksum. NIC offloads are advantageous because they free valuable CPU cy-
cles. But their applicability is typically limited to layer<=4 protocols (TCP and lower),
and they are inapplicable to layer-5 protocols (L5Ps) that are built on top of TCP. This
limitation is caused by a misfeature we call "offload dependence," which dictates that
L5P offloading additionally requires offloading the underlying layer<=4 protocols and
related functionality: TCP, IP, firewall, etc. The dependence of L5P offloading hinders
innovation, because it implies hard-wiring the complicated, ever-changing implemen-
tation of the lower-level protocols.

We propose "autonomous NIC offloads," which eliminate offload dependence. Au-
tonomous offloads provide a lightweight software-device architecture that accelerates
L5Ps without having to migrate the entire layer<=4 TCP/IP stack into the NIC. A main
challenge that autonomous offloads address is coping with out-of-sequence packets.
We implement autonomous offloads for two L5Ps: (i) NVMe-over-TCP zero-copy and
CRC computation, and (ii) https authentication, encryption, and decryption. Our au-
tonomous offloads increase throughput by up to 3.3x, and they deliver CPU consump-
tion and latency that are as low as 2.4xB and 1.4xB, respectively. Their implementation
is already upstreamed in the Linux kernel, and they will be supported in the next-
generation of NVIDIA NICs.

3.1 L5P Acceleration

Considerable effort went into L5P acceleration. Here, we make the case for autonomous
NIC offloads by categorizing existing approaches and showing that our proposal fills
an important missing piece in the L5P acceleration design space. We focus on L5P over
TCP since these are most challenging, but similar arguments could be made for lower
layer network stack functionality.

Figure 3.1 depicts the categories. L5P acceleration has two flavors: software- (§3.1.1)
and hardware-based. The latter occurs on- (§3.1.2) or off-CPU via specialized accelera-
tors (§3.1.3) or NICs. Existing NIC acceleration requires implementing TCP and lower
protocols on the NIC, which we thus call dependent NIC offloading (§3.1.4). In con-

41
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trast, our NIC provides autonomous offloading, which keeps all protocols in software,
and which strictly improves performance per dollar (§1.1.2).

3.1.1 Software Acceleration

Software acceleration reduces overheads imposed on L5Ps by OS abstractions. It does
not accelerate actual L5P computations, such as encryption, compression, and error
detection.

In-kernel L5P implementations work around OS overheads. Examples include DRBD [200],
SMB [201], NBD [202], iSCSI [203], and more recently TLS [74] and NVMe-TCP [73].
They reside alongside the OS’s TCP/IP and improve performance through cross-layer
data batching [72], fusing data manipulations [204], controlling flow group schedul-
ing [205] and CPU scheduling. Notably, they eliminate system call overheads [206].

Instead of moving the entire L5P into the kernel, specialized software stacks bypass
certain kernel overheads by: utilizing hardware queues exposed to userspace [207,208];
implementing the TCP/IP stack in userspace [209–213]; replacing the POSIX API ab-
stractions [210, 214, 215]; and exploiting knowledge of L5P workloads [75, 76].

In contrast to software, hardware acceleration targets data-intensive compute-bound
processing, which accounts for much of the L5P cycles. Figure 3.2 measures these cy-
cles in four in-kernel L5P workloads: (1) NVMe-TCP client write (compute: CRC of
outgoing L5P message m); (2) NVMe-TCP client read (verify CRC of incoming m and
copy its content to OS block layer); (3) TLS transmit (encrypt m); and (4) TLS receive
(decrypt m). We see that the CPU spends 46%–74% of its cycles on the compute-bound
part, even though these L5Ps are in-kernel. Such overhead can only be reduced via
hardware acceleration. Thus, software and hardware accelerations are symbiotic, and
L5Ps may benefit independently from both.

3.1.2 On-CPU Acceleration

On-CPU acceleration occurs via an in-core hardware implementation invoked by ded-
icated instructions. In the context of our above examples, it is available in commercial
CPUs for AES encryption and decryption [78], and SHA and CRC32 digests [80,82,216,
217]. Dedicated instructions yield 2x–30x speedups [218, 219] but might still account
for a significant fraction of L5P processing cycles. For instance, the results in Figure 3.2
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Table 3.1: Encryption bandwidth (MB/s) of AES-NI (on-CPU) vs. QAT (off-CPU) ac-
celerators. Results for 16 KB blocks with 1 or 128 threads using a single core (2.40 GHz
Intel Xeon E5-2620 v3 CPU).

cipher QAT 1 QAT 128 AES-NI 1
AES-128-CBC-HMAC-SHA1 249 3144 695
AES-128-GCM 249 3109 3150

are obtained with on-CPU accelerators, and yet the accelerated computations take up
to 49% and 74% of NVMe-TCP and TLS message processing cycles, respectively.

3.1.3 Dedicated Off-CPU Accelerators

Off-CPU acceleration offloads part of the L5P computation from the CPU to another
device accessible via PCIe or the on-chip interconnect. Offloading aims at freeing CPU
cycles that would otherwise be devoted to the computation, allowing the CPU to do
other work instead. We distinguish dedicated accelerators, discussed here, from on-
NIC offloads (§3.1.4).

Dedicated off-CPU accelerators exist for various computational operations, such
as: (de)compression, (a)symmetric encryption, digest computation, and pattern match-
ing [83, 220–222]. Such off-CPU acceleration still requires some CPU work for each
computation, to invoke the accelerator and retrieve the results. This work incurs la-
tency and overhead that depend on the amount of data moved, the interface of the
accelerator, and its location in the non-uniform DMA topology [84,85,100]. As a result,
off-CPU accelerators can struggle to outperform on-CPU accelerators [223]. Realizing
benefits from off-CPU acceleration thus frequently requires re-engineering applications
to eliminate blocking operations and/or using multiple threads, all so as to keep the
CPU busy while waiting for the accelerator [84].

To illustrate, Table 3.1 compares the throughput (single core OpenSSL speed test)
of Intel off-CPU QuickAssist Technology (QAT) [220] accelerated cryptographic op-
erations to on-CPU AES-NI acceleration [78]. For QAT, we show single- and multi-
threaded clients, where the latter uses threads to overlap waiting for QAT with use-
ful work. When running AES128-CBC-HMAC-SHA1 (AES in cipher block chaining
mode, authenticated by SHA1 hash-based message authentication code), AES-NI does
not accelerate the SHA1 computation. Thus, single-threaded QAT throughput is 2.7x
lower than AES-NI, but 128-thread QAT outperforms AES-NI by 4.5x. In contrast,
for AES128-GCM (AES in Galois/counter mode), single-threaded QAT throughput is
12.5x lower than AES-NI, and 128 QAT threads sharing the core only yield comparable
throughput to single-threaded AES-NI. An actual application might require substantial
re-engineering to support this level of threading.

3.1.4 Dependent NIC Offloads

As opposed to dedicated off-CPU accelerators, NIC offloads impose neither additional
data transfers, nor more CPU work. CPUs operate NICs in any case, and data flows
through them in any case, making them ideally positioned for data offloading. The
problem is that all existing L5P NIC offloads [14, 86, 87] are dependent. Namely, they
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Figure 3.3: Per-year Linux kernel LoC of TCP/IP processing code.

require the NIC to handle the L5P, which then requires the NIC to also implement the
underlying layer≤4 functionality in hardware, including TCP/IP and related subsys-
tems like firewalls and tunneling.

Dependent offloading is thus undesirable. Whereas data functions (like CRC) are
relatively simple and well-suited for hardware, TCP/IP stacks are complex, evolving,
interact with many OS subsystems, and incur considerable maintenance costs. To il-
lustrate, Figure 3.3 shows the yearly number of lines of code (LoC) in Linux’s TCP/IP
stack: modified and in total. The code is constantly changing, with 5–25% LoC mod-
ification in each component, each year, for the past decade. Having to additionally
support NIC-based TCP/IP stacks would further increase this maintenance burden.

For these reasons, Linux kernel engineers resist supporting existing NIC TCP of-
fload engines (TOEs) [93, 94]. Microsoft has deprecated TOE support for similar rea-
sons [95]. And several operators recommend disabling TOEs due to performance is-
sues and incompatibilities with OS interfaces [224–226].

Importantly, TOEs hinder innovation and are ill-suited for users who develop their
network stack [227]. For instance, Netflix has made the following statement regarding
TOEs [228]:

“TOEs are not a preferred solution for Netflix content delivery because we innovate in the
protocol space [to improve] our customers’ quality of experience (QOE). We have a team of
people working on improvements to [the OS’s] TCP and they have achieved significant QOE
gains [...]. With the TCP stack sealed up in an ASIC, the opportunities for innovation [...] are
quite limited. We also have concerns around potential security issues with TOE NICs.”

The security concerns arise as TCP/IP stacks are complex and might have security
bugs [91,92], which can be easily and quickly fixed/hot-patched in software, but not in
hardware.

We remark that we focus on TCP, as it is the most widely used protocol, and it
handles reordering and loss in byte streams, which is the challenge for autonomous
offloads. But simpler level-4 protocols are also in scope. For example, FlexNIC [229]
dependently offloads with DCCP [230], implementing, e.g., DCCP’s acks logic in the
NIC; an autonomous offload would utilize the OS logic instead.

3.2 Autonomous Offloads
Autonomous offloads consist of a software/NIC architecture for moving data between
L5P memory and TCP packets, optionally transforming or computing over the data.
This architecture offloads data-intensive processing to the NIC, without having to mi-
grate the entire TCP/IP stack into the NIC. Specific offload capabilities are cast into
NIC silicon and are available for relevant L5P software as a NIC feature.
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Table 3.2: Autonomous offload properties and associated limitations. (We are unaware
of any non-constant size state computation or protocol.)

property limits the offload of (example)
size-preserving on transmit encapsulation and compression
incrementally computable cipher block chaining (CBC)
constant size state none
plaintext magic pattern SSH’s encrypted headers

Autonomous offloads target L5P software that can communicate directly with the
NIC driver, e.g., in-kernel L5Ps or userspace TCP/IP stacks. High-performance L5P
software already adopts this design (§3.1.1). The main idea of the L5P-NIC collabora-
tion is to process L5P messages in the NIC transparently to the intermediating TCP/IP
stack. The NIC performs the offload on in-sequence packets, with some help from L5P
software on out-of-sequence packets.

Offloading is possible for operations and L5Ps that satisfy certain preconditions
(summarized in Table 3.2). Offloadable operations must be size-preserving for seam-
less interoperation with software TCP/IP on transmit, while on receive we can work
around this precondition in some cases (§3.2.1). Offloadable operations must be incre-
mentally computable over any byte range of an L5P message, given only some constant-
size state and access to packet data (§3.2.2). In particular, the offload cannot assume
L5P message alignment to TCP packets. Offloadable L5P messages must contain plain-
text magic pattern and length fields to identify and track messages speculatively on the
wire. The offload will rely on these fields to recover after loss and reordering on receive
(§3.2.3).

These preconditions are satisfied by most of the common data-intensive opera-
tions [71]: (1) copying, (2) encryption and decryption, (3) digesting and checksum-
ming, and some (4) deserialization and (5) decompression methods. Most L5Ps meet
our requirements as well. Examples include (1) HTTP/2 [66] (encryption/deserializa-
tion/decompression); (2) gRPC [69] and Thrift [68] (copy/deserialization); (3) iSCSI [203],
NBD [202], and SMB [201] (copy/encryption/digest); (4) Memcached [48] and Mon-
goDB [70] (copy).

The following presents the high-level ideas of autonomous offloading and its pre-
conditions. We detail the design in §3.3.

3.2.1 Data Manipulation

An operation can be offloaded on one or both of the send/receive paths. To offload
an operation when sending, L5P software “skips” performing the offloaded operation,
thereby passing the “wrong” bytes down the stack to the NIC. The NIC performs the
operation, resulting in a correct message being sent on the wire. For TCP-transparency,
we require the offloaded operation to be size-preserving: it must never add or remove
bytes from the stream. Were the operation to add/remove bytes from the stream, the
NIC would have to handle these bytes’ retransmission, acknowledgment, congestion
control, etc., as the OS TCP stack is unaware of these bytes (Figure 3.4).

When receive offloading, the NIC parses incoming L5P messages within TCP pack-
ets, performs the offloaded operation, and passes packets pointing to partially pro-
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Figure 3.4: The problem with non-size-preserving offloads.

cessed L5P messages up the stack to L5P software. For TCP-transparency, we must
preserve packet sizes observed by TCP, which is simple for size-preserving offloads.
But, in contrast to the send side, receivers can offload non-size-preserving operations
by DMAing offload results to pre-allocated L5P destination buffers while also DMAing
the original unmodified data to the NIC driver receive ring. Consequently, receive-
offload can be non-size-preserving, provided that L5P software can predict its output’s
size and prepare buffers for it.

3.2.2 In-Sequence Packet Processing

We require that the offloaded operation can be performed over any byte range of an
L5P message (i.e., in-order TCP packets of any size), given only some constant-size
state. The state is composed of dynamic and static components. The dynamic state is a
function of (1) the previous bytes in the current message and (2) the number of previous
messages. It is (conceptually) updated after each packet (byte) is processed. The static
state is fixed per-request or per-connection, e.g., TLS session keys or NVMe-TCP host
read response destination buffers.

The above properties allow the NIC to perform the offload without having to buffer
packets until obtaining a full L5P message, which is impractical (e.g., because mes-
sages can be big, potentially exceeding the TCP receive window). Specifically, the NIC
maintains per-flow contexts (for both outgoing and incoming flows) holding the state
required to perform the operation on the next in-sequence TCP packet. Once that packet
is handled, the NIC updates the flow’s (dynamic) state.

Our requirements are satisfied by most L5P data-intensive operations, which typi-
cally process the current L5P message independently of the payload of previous mes-
sages [64, 65, 67–69, 231]. The requirements mainly preclude offloading of operations
such as AES cipher block chaining (CBC), which operate on fixed blocks and not an ar-
bitrary range. However, modern ciphers, such as AES-GCM and ChaCha20-Poly1305,
satisfy our requirements.

3.2.3 Out-of-Sequence Packet Processing

Receive: The NIC cannot perform the offloaded operation on an out-of-sequence
packet. It also cannot buffer it until the in-sequence packet arrives. Instead, we fall
back on L5P software to perform the operation: an out-of-sequence packet is passed to
the OS, and L5P software performs the operation on its bytes when it receives the mes-
sage containing the packet. Such messages, in which the operation was offloaded on
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some/none of the bytes, are called partially/fully un-offloaded. To resume offloading, the
NIC resynchronizes itself into knowing the next expected TCP packet and its associated
operation state, as explained next.

Resync: We require that L5P message headers contain (1) at least one magic pattern
plaintext field that identifies a message header on the wire and (2) a length field. Com-
bined, these properties enable a hardware-driven NIC context resynchronization process,
which begins when the NIC receives out-of-sequence data and loses track of the flow’s
state. To resynchronize, the NIC speculatively identifies an L5P message in the incom-
ing byte stream by the magic pattern, and confirms this identification with the L5P
software. While waiting for the L5P’s reply, the NIC keeps track of incoming mes-
sages by using the L5P header length field to derive the TCP sequence number of the
next expected message (where another magic pattern should appear). Once the L5P
confirms the speculation, the NIC can resume offloading from the next L5P message,
since the dynamic state at message boundary depends only on the number of previous
messages, which is included in the L5P’s confirmation (see §3.3.3).

Transmit: To perform the offloaded operation on a retransmitted outgoing packet, the
NIC’s dynamic state is recovered to the correct state for that packet by the NIC driver
with the help of the L5P software. To this end, the L5P software must store the state for
an L5P message until the TCP acknowledgment of all of its packets.

3.3 Design

This section describes the software and hardware designs that together form the au-
tonomous NIC offloads architecture. We first describe the software and hardware
interfaces (§3.3.1), followed by handling of transmitted (§3.3.2) and received (§3.3.3)
packets, for both in-sequence and out-of-sequence (OoS) data.

3.3.1 Interfaces

The NIC maintains a per-flow HW context, which holds the state required to perform
the offloaded computation for a specific packet of the flow (typically, the next in-sequence
packet). Each HW context contains: (1) tcpsn, the TCP sequence number that this con-
text can offload; (2) the L5P message type, length, and offset within the message at
tcpsn; and (3) L5P state required to perform the offload, such as cipher keys. A context
also stores a flow identifier, e.g., a TCP/IP 5-tuple.

L5P–NIC driver interface The NIC driver provides an interface to the L5P software
for context creation, destruction, and recovery (Listing 3.1). After the L5 handshake is
complete, the L5P calls l5o_create with the inputs required to process the next message
in the stream (l5_state), and the TCP sequence number of the first byte in that mes-
sage (tcpsn). To stop the offload, the L5P calls the l5o_destroy method. Offloading is
typically terminated when the socket is destroyed.
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l5o * l 5 o _ c r e a t e ( sock * , l 5 _ s t a t e * , u32 tcpsn )
void l5o_dest roy ( l5o * )
r r _ s t a t e _ i d l 5 o _ a d d _ r r _ s t a t e ( l5o * , r r _ s t a t e * )
void l 5 o _ d e l _ r r _ s t a t e ( l5o * , r r _ s t a t e _ i d )
void l5o_resync_rx_resp ( l5o * , u32 tcpsn , bool re s )

Listing 3.1: Operations the NIC driver provides to the L5P.

l5_msg_state * l5o_get_ tx_msgsta te ( sock * , u32 tcpsn )
void l5o_resync_rx_req ( sock * , u32 tcpsn )

Listing 3.2: Operations the L5P provides to the NIC driver.

In Request-Response (RR) protocols, offloading the computation for an incoming
message (a response) requires the NIC to associate the message with the request that
triggered it. For example, an offload copying the response payload directly to an ap-
plication buffer needs to know the buffer’s address. To this end, the NIC can internally
map incoming messages to the required offloading state, which is configured using the
l5o_add_rr_state method. The L5P provides this state to the NIC before sending the
request, and deletes it after the response is received using the l5o_del_rr_state method.

The l5o_resync_rx_resp method is used for receive-side context recovery from OoS
packets (§3.3.3). The L5P also provides an interface to the driver (Listing 3.2) for context
recovery, which we discuss in §3.3.2 and §3.3.3.

Driver–NIC interface Offload-related commands are passed to the NIC via special
descriptors, which are placed into the flow’s usual send ring to ensure ordering. The
NIC passes information to the driver through descriptors in the flow’s receive ring.
Both rings are accessed through DMA.

3.3.2 Transmitted Packet Processing

To send application data, the L5P encapsulates it into L5P messages, preserving all
fields of the message that appear on the wire, including fields that are filled by the
offload (e.g., CRC). The L5P then hands the data for transmission to the next layer
protocol. Typically, this protocol is TCP, but it can also be an L5P (e.g., TLS), as our
offloads compose (§3.4.3).

When the NIC driver is handed a TCP packet for transmission, it must figure out if
the packet is in- or out-of-sequence with respect to the NIC’s flow context. To this end,
it extracts the context ID from the packet’s metadata; this ID is passed down from the
L5P, which obtained it on context creation. The driver shadows the NIC’s context in
software, and so it can check the packet’s TCP sequence against the context’s expected
TCP sequence to identify OoS packets. If the packet is OoS, the driver recovers the
NIC’s context, as described below. Next, the packet is posted to the NIC’s send ring,
tagged with the HW context ID (which saves the NIC from looking up the HW context
based on the packet fields). Finally, the NIC performs the offloaded operation and
sends the packet.
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Context recovery for OoS data To enable offloading of transmitted OoS data, the
driver recovers the NIC’s context to match the packet. As noted in §3.2, we assume that
the state required to perform the offload can be obtained from the packet’s L5P message
(Figure 3.5). The driver obtains this state using the l5o_get_tx_msgstate upcall to the
L5P, and then passes it to the NIC via a special descriptor. The driver also updates the
context’s expected TCP sequence (in both HW and its shadow) to match the packet’s
TCP sequence.

To answer l5o_get_tx_msgstate calls, the L5P software must maintain a map from
TCP sequence numbers to their corresponding L5P messages (in our experience, this
takes ≈ 200 LoC). The L5P holds a reference to the buffers which contain transmitted
L5P message data, similarly to how TCP holds a reference to all unacknowledged data.
The L5P releases its reference when the entire message is acknowledged.

3.3.3 Received Packet Processing

The NIC only performs the offload for in-sequence packets. OoS packets are handled
by software. When a packet with a valid TCP/IP checksum arrives, the NIC looks up
its flow’s context.1 If a context is found, the NIC performs the offloaded operation if
the TCP sequence numbers of the context and the packet match. Both offloaded and
un-offloaded packets are passed to the driver, with an indication (in their descriptors)
of whether offloading was performed. The driver passes the packet and the offload
result as metadata up to the network stack, which takes care not to coalesce packets
with different offload results. The L5P software reads L5P messages handed to it by
TCP packet-by-packet and skips computing the offloaded function if all packets are
offloaded. Otherwise, the L5P must perform the relevant data manipulation itself.

Out-of-sequence packets The NIC never performs the offload on an OoS packet, but
it processes such packets in an attempt to get back in sync with the TCP stream. The
NIC cannot wait for the packet Q with the sequence number it expects to arrive, be-
cause that would require buffering all the flow’s packets that arrive in the meantime.
(Without such buffering, packets with sequence numbers higher than Q may reach the
OS TCP stack while the NIC waits for Q, leaving it unaware of the next expected se-
quence number on the wire.) We thus need to resync without waiting for Q to arrive.

It follows from our requirement that offload state depend only on the previous bytes
of a message and on the number of previous messages (§3.2.2) that the NIC can resync
itself once it sees the next L5P message. Thus, when an OoS packet P arrives, the NIC

1Similar hardware functionality already exists for LRO and ARFS.
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computes the TCP sequence number of the next L5P message M by using the length
of the current message (which is stored in the context). If the TCP sequence number
of P, P.seq, is before M’s sequence number, M.seq, then P is ignored. If P contains M’s
header, the context is updated to M, so that the offloading can resume for the packet
following P. Otherwise (P.seq is after M.seq), the NIC cannot resync, as it does not
know which (if any) L5P messages appeared after M. In this case, the NIC begins a
context recovery process in collaboration with the L5P software.

Context recovery A naive software-driven approach for context recovery is for L5P
software to inform the NIC about the TCP sequences numbers of the messages it re-
ceives, thereby allowing the NIC to resync. However, such a scheme is inherently racy:
by the time the NIC hears about a message, it may have already started receiving pack-
ets of subsequent messages. As a result, the NIC may never be able to successfully
recover its context. To avoid this problem, our design employs a hardware-driven recov-
ery process, in which the NIC speculatively identifies arriving messages and relies on
software to confirm its speculation.

The recovery algorithm is depicted in Figure 3.6. Initially (transition a ), the NIC
enters a speculative searching state. In this state, whenever a valid TCP packet arrives,
the NIC searches for the protocol’s header magic pattern (§3.2) in the TCP payload.
When found, the NIC requests the software L5P to acknowledge the detected message
header TCP sequence number (tcpsn) via the NIC driver, which calls l5o_resync_rx_req
to register the request with the L5P. The NIC also transitions to the tracking state ( b ).
The L5P stores tcpsn and waits until the corresponding message is received from the
OS TCP stack. The L5P then notifies the NIC whether the message’s TCP sequence
number matches the NIC’s “guess,” using the l5o_resync_rx_resp method ( c ).

Meanwhile, the NIC tracks received messages using the message header’s length
field, verifying that each subsequent message begins with the magic pattern. If an
unexpected pattern is encountered or the L5P response indicates that the NIC misiden-
tified a message header, then the NIC moves back to the speculative searching state
( d1 ). If the L5P response indicates success while the NIC is in the tracking state, then
the NIC can resume offloading from the next message ( d2 ).

Example Figure 3.7 depicts the various cases of receive packet processing. If pack-
ets arrive in-sequence then all are offloaded. Otherwise, we have the following cases:
(a) retransmitted packets (P2) bypass offload and do not affect NIC state; (b) L5P data
reordering within the current message (P2). The NIC identifies the next L5P message
header (P3), updates its context to expect P4 and continues processing from there. The
packet containing the L5P header is not offloaded as it does not match the expected
TCP sequence number, but the following packet (P4) does match it; (c) L5P header re-
ordering (P3) causes the NIC to cease offloading. Then, it searches and finds an L5P
message header magic pattern (P5) and it requests software to confirm its speculation.
We note that it can identify patterns split between packets if they arrive in-sequence.
Meanwhile, NIC HW tracks subsequent L5P headers (P8) using header length fields,
and verifies their magic pattern. Eventually, L5P software receives the NIC HW request



51

HW⇒SW: is this an L5P header? SW⇒HW: yes it is

(a) Second arrival (retransmission) of P2 belongs to the "past", so the offload 
bypasses it.

91 2 3 4 2 5 6 7 8H H H H

(b) Because P2 is missing (lost), the offload stops at P3; after, while scanning P3, 
the NIC identifies a subsequent L5P header, allowing it to update offload contexts 
and resume offloading at P4.

(c) According to P1.header.size, the NIC expects to find the subsequent L5P header 
in P3, which is missing (reordered), so the NIC must trigger context recovery. It 
therefore searches for a magic pattern, identifies P6.header, asks the L5P software 
if the identification is correct, and speculatively tracks the stream assuming that it 
is, until software confirmation arrives at P9, allowing the offload to resume at P10.

91 3 4 5 6 7 8H H H H

91 2 4 5 6 7 8H H3H 10 11 12H

offloaded not offloaded L5P header

speculative trackingsearch magic pattern

H H

Figure 3.7: NIC processing of various OoS packets received from the wire: (a) retrans-
mission, (b) L5P data reordering, and (c) L5P header reordering which triggers OoS
recovery. ccc

and the corresponding packet after TCP processing, and then L5P software confirms
NIC hardware speculation. Finally, offload resumes on the next packet boundary.

3.4 Implementation

Here, we describe case studies of autonomous offloads targeting in-kernel L5Ps in
Linux: NVMe-TCP (§3.4.1), TLS (§3.4.2), and their composition (§3.4.3). The offloads
described in this section are (or will be) available in NVIDIA ASIC NICs.

3.4.1 NVMe-Over-TCP Offload

NVMe-TCP [67] is a pipelined L5P which abstracts remote access to a storage con-
troller, providing the host with the illusion of a local block device. In NVMe-TCP, each
NVMe [232] submission and completion queue pair maps to a TCP socket. Read/write
IO operations use request/response messages called capsules, whose header contains
a (1) capsule type, (2) data offset, (3) data length, and (4) capsule identifier (CID). The
CID field is crucial to correlate between requests and responses, as the controller can
service requests in any order. Also, capsules can be protected by a trailing CRC.
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Offloaded data manipulation We offload the two dominant data manipulation op-
erations of the protocol: CRC32C [81] data digest computation/verification (on trans-
mit/receive) and capsule data copy from TCP packets to block layer buffers (on re-
ceive). Note that this copy cannot be avoided with standard zero-copy techniques, as
(1) the OS cannot make the NIC DMA directly into application or page cache buffers,
since the OS does not know ahead of time which receive ring entry corresponds to
which NVMe-TCP response; and (2) even if that were possible, packets contain cap-
sule headers, which do not belong in block layer buffers.

Copy offload The NIC stores a map from CIDs to the corresponding block layer
buffers. The map is updated by the NVMe-TCP before it sends a read request. When
a response arrives, the NIC DMA writes the capsule payload to the block layer buffers
for each offloaded packet, while placing the packet and capsule headers/trailers in the
NIC’s receive ring (see Figure 3.8). These receive packet descriptors provide all the in-
formation necessary to construct a socket buffer (SKB) that points to the received data,
including the block layer buffer. When this SKB reaches the NVMe-TCP code respon-
sible for copying capsule payload data to the block layer buffer, the copy is skipped, as
the relevant memcpy source and destination addresses turn out to be equal. This means
that partially- or un-offloaded capsules are handled transparently, with the memcpy per-
formed as usual for the remaining un-offloaded parts.

CRC offload On transmit, NVMe-TCP prepares capsules with dummy CRC fields,
which the offload fills based on the digest of capsule data of previous in-sequence
packets. OoS packets are handled as described in §3.3.2. On receive, the NIC checks
the CRC of all capsules in the TCP payload of in-sequence packets. It reports a single
bit to the driver (along with the packet descriptor), which is set if and only if all cap-
sules with the packet pass the CRC check. The driver sets a crc_ok bit in the SKB of the
received packet2 according to the NIC’s indication, and hands the SKB to the network
stack. When NVMe-TCP receives a complete capsule, it skips CRC verification if the
crc_ok bits of all SKBs in the capsule are set. Otherwise, it falls back to software CRC
verification. Partially- or un-offloaded capsules are thus handled easily.

Magic pattern For speculative searching, we rely on a number of fields from the
NVMe-TCP capsule header and trailer to form the pattern and verify it: (1) PDU type:
one of only eight valid values (1 byte); (2) header length: well known constant for each

2This requires adding a new bit to the SKB.
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PDU type (1 byte); (3) header digest: optional CRC32 digest of the header (4 bytes);
and (4) data digest: optional CRC32 digest of the data (4 bytes).

Implementation effort Our patches modifying Linux to support the NVMe-TCP of-
fload are under review by the relevant maintainers. The changes in NVMe-TCP are 418
LoC, and another 1755 LoC in the NVIDIA NIC driver.

3.4.2 TLS Offload

The Transport Layer Security (TLS) protocol is an L5P that protects the confidentiality
and integrity of TCP session data [64, 65]. A TLS session starts by exchanging keys via
a handshake protocol, after which all data sent/received is protected with a symmetric
cipher, such as AES-GCM [233].

Application typically use a library that implements TLS. We modify the popular
OpenSSL library to use the Linux kernel’s TLS (KTLS) data path, which can leverage
our offload. OpenSSL’s TLS handshake code remains unmodified.

TLS messages are called records and are at most 16 KiB in size. A TLS record consists
of a header, data and a trailer. The header holds four fields of interest: (1) record type,
(2) version, (3) record length, and (4) initialization vector (IV), used by the cipher. The
trailer holds the integrity check value (ICV) of the entire record. For each socket send
(receive), KTLS encapsulates (decapsulates) the data into records.

Our offload is motivated by TLS 1.3 [65], which support two symmetric ciphers:
AES-GCM and Chacha20/Poly1305. We offload AES-GCM [233], as it is the most com-
mon TLS cipher [234–238].

Crypto offload On transmit, KTLS prepares plaintext records with dummy ICV fields,
and the NIC replaces plaintext with ciphertext and fills the ICV. OoS packets are han-
dled as described in §3.3.2. On receive, the NIC decrypts the payload of each offloaded
received packet, and it checks all ICV values within the packet. It reports the result in
a single bit to the driver (along with the packet descriptor). The driver sets a decrypted
bit in the received packet’s SKB according to the NIC’s indication, and hands the SKB
to the network stack. When a complete record is received by KTLS, it skips decryption
and authentication if the decrypted bits of all SKBs in the record are set. Otherwise,
KTLS falls back to software decryption and authentication.

Zero-copy sendfile support KTLS supports the sendfile system call. While send-
file is typically implemented without copying, KTLS cannot encrypt transmitted page
cache buffers in-place, as that would corrupt their content. Instead, standard KTLS
sendfile encrypts sent data in a separate buffer, allocated for this operation. Our of-
fload enables skipping this costly allocation, as KTLS can hand the page cache buffers to
the NIC, which encrypts them to the wire instead of in-place. As a result, KTLS with
our offload can achieve performance comparable to plain TCP sendfile (see §3.5.3).
However, the user becomes responsible for not changing files while they are transmit-
ted.
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Partial offload Conceptually, the software fallback for partially-offloaded records is
to decrypt the non-offloaded packets and authenticate the record while reusing offload
results. However, AES-GCM authentication is computed on the ciphertext data, and
so performing authentication in software requires re-encrypting the packets decrypted
by the NIC. Consequently, handling partial decryption is costlier than full decryption
(see §3.5.4).

Magic pattern For speculative searching, we rely on a number of fields from the TLS
record header to form the pattern and verify it: (1) record type (1 byte): one of only
six valid values3; (2) record version (2 bytes): the version is constant after the TLS
handshake; and (3) record length (2 bytes): this field must be less than 16 KiB.

Software implementation Our OpenSSL changes adding KTLS support consist of
1381 LoC. Offload support in KTLS is 2223 LoC. Offload support in the ConnectX6-Dx
includes 2095 LoC. Our changes have been accepted for inclusion in OpenSSL [239–241]
and Linux [242, 243], indicating the relevance of the offload. Others have added KTLS
offload support to FreeBSD [244].

3.4.3 NVMe-TLS Offload

Combining NVMe-TCP and TLS offloads is simple, as the layering determines their or-
dering. NIC HW parsing starts from Ethernet, and proceeds to parse TLS then NVMe-
TCP on transmit and receive. In-sequence packet processing remains the same, where
each offload is processed independently: on transmit we do NVMe-TCP then TLS; and
on receive vice versa. Transmit and receive OoS context recovery are performed inde-
pendently for each protocol.

3.5 Evaluation

Using microbenchmarks, we measure the overhead of the data-intensive operations
that our NIC autonomously offloads (§3.5.1). We then evaluate actual offload perfor-
mance with macrobenchmarks (§3.5.3), and we quantify the effect of out-of-sequence
TCP packets (§3.5.4). Finally, we examine the performance of autonomous NIC offload
at scale (§3.5.5).

TLS results are obtained using real NVIDIA ConnectX6-Dx ASIC NICs. NVMe-
TCP results are obtained via emulation, as this offload will only become available in
NVIDIA’s next-generation ConnectX-7 NICs. We validate the accuracy of our emula-
tion methodology by comparing the performance of real and emulated TLS offload-
ing (§3.5.2).

Our setup consists of a Dell PowerEdge R730 server and an R640 workload genera-
tor. The server has two 14-core 2.0 GHz Xeon E5-2660 v4 CPUs, and the generator has
two 12-core 2.1 GHz Xeon Silver 4116 CPUs. Both have 128 GB (=4x16 GB) memory,
and they run Ubuntu 16.04 (Linux 5.6.0) with hyperthreading and Turbo Boost off to

3HW can store an extensible list of these values.
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avoid nondeterministic effects. For storage, the server utilizes an Optane DC P4800X
NVMe SSD that resides remotely, on the generator.

The machines are connected back-to-back via 100 Gbps NVIDIA ConnectX6-Dx NICs
that implement our TLS AES128-GCM crypto autonomous offload.

All the results presented in this section are trimmed means of ten runs; the min-
imum and maximum are discarded, and the standard deviation is below 3% unless
specified otherwise.

3.5.1 Cycle Breakdown

NVMe-TCP When NVMe-TCP reads from a remote drive, recall that it accesses the
received bytes twice: (1) when copying them from the network buffers to their desig-
nated memory locations; and (2) when computing the incoming capsule’s CRC. Fig-
ure 3.9 shows how long these two operations take out of the total of an individual
I/O request. We use fio [245] to generate random read requests of different sizes (title
of subfigures) and to vary the number of outstanding requests (I/O depth along the
x axis). The left and right y axis labels show per-request duration in cycles and the
relative cost of the copy+CRC overheads out of the total, respectively. The system is
limited to using a single core for all of its activity.

We can see that smaller requests have a potential improvement of 2%–8%, and big-
ger requests have a potential improvement of 25% (lower parallelism, up to depth=64)
to 55% (higher parallelism, as of depth=128). In the latter case, the 32 MiB LLC becomes
too small to hold the working set (128 requests times 256 KiB per request = 32 MiB).
From this point onward, copying becomes the dominant overhead, as every memory
access is served by DRAM.

TLS We similarly measure TLS’s offloadable overheads: encryption, decryption, and
authentication, which we collectively denote as “crypto” operations. For this purpose,
we use iperf [246], which measures the maximal TCP bandwidth between two ma-
chines, and which we modified to support OpenSSL. We use 256 KiB messages at the
sender and ensure that the server’s core always operates at 100% CPU. Recall that each
message consists of a sequence of TLS records, which can be as big as 16 KiB.

Figure 3.10 shows the results. Unsurprisingly, bigger TLS records reduce the weight
of network stack processing relative to the crypto operations, making the potential
offload benefit more pronounced at the right. This outcome is consistent with the fio
results. Typically, network stacks operate more efficiently when sending than when
receiving, because batching is easier; the receive side has to work harder. Consequently,
the potential benefit of offloading is higher for transmitting (≤74%) than for receiving
(≤60%).

With real TLS offloading, we find that iperf’s single core throughput improves by
3.3x and 2.2x upon transmit and receive, respectively, relative to the non-offloaded
baseline. When saturating the NIC with multiple iperf instances, CPU utilization re-
spectively improves by up to 2.4x and 1.7x.
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3.5.2 NVMe-TCP Offload Emulation

We hypothesize that commenting out the software functionalities to be offloaded (with-
out really implementing them in the NIC) yields similar performance to real offloading.
We verify this hypothesis with TLS offloading. We find that the “other” component in
Figure 3.10 is an accurate performance predictor for our new TLS offload capability: at
most 7% difference between the real and predicted improvements in all cases.

We use this finding to emulate NVMe-TCP offloading by: (1) setting the value of all
stored data to be a repetitive sequence of an 8-byte “magic” word (0xCC...CC); (2) mod-
ifying NVMe-TCP receive-side to refrain from copying incoming “magic capsules” (that
start with the magic word) to their target buffers, and also; (3) skipping CRC computa-
tion and verification for magic capsules. Clearly, a block device driver that fails to copy
device content to the designated target buffers seems problematic. We next describe
how the integrity of our experiments is preserved despite this problematic behavior.

Nginx The subsequent evaluation uses two macrobenchmarks. The first is the nginx
http web server [247], configured to serve files from an ext4 filesystem mounted on our
NVMe-TCP block device. (Recall that the drive resides remotely, on the workload gen-
erator machine.) We pre-populate ext4 with “magic files”, which exclusively contain
magic word sequences. We set the size of magic files to be an integral multiple of 4 KiB,
and we configure nginx clients to only request these files. We also set ext4 read-ahead
to the file size, such that there are no block requests that exceed this size.

Neither the kernel of the server machine, nor nginx and its clients care about the
content of the files that they send/receive. Ext4 does not collocate metadata within the
4KiB blocks of magic files, so it is indifferent to whether their content is copied to the
server’s page cache; nginx, which sends this page cache content to its clients, is likewise
indifferent to the content; and the clients do not actually use the content either.

Redis-on-Flash The second macrobenchmark we use is Redis-on-Flash (RoF), a key-
value store [248, 249] that uses RocksDB [250] as storage backend. RocksDB is incom-
patible with our emulation. It runs with RoF on the server and uses the NVMe-TCP
block device to read and write its internal data structures, which interleave metadata
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and data in nontrivial ways. Consequently, magic capsules do not exist in this setup,
even if the values we store exclusively consist of magic words.

To overcome this problem, with some help from Redis Labs [251] engineers, we im-
plemented OffloadDB, a simple alternative storage backend for RoF, which does sepa-
rate between keys, values, and metadata (568 LoC). Coupling RoF with an OffloadDB
storage backend makes our emulation approach applicable to RoF as well.

3.5.3 Macrobenchmarks

As noted in §3.5.2, we use the nginx and RoF macrobenchmarks to evaluate the per-
formance of our two autonomous NVMe-TCP and TLS offloads, individually and to-
gether. We begin with nginx and drive it with the wrk [252] http benchmarking tool.
Wrk connects to nginx using 16 threads, which together maintain 1024 open connec-
tions that repeatedly request files of a specified size and then wait for a response. We
utilize two configurations: C1 and C2. In C1, none of the drive’s relevant data is found
in the server’s page cache. C1 stresses NVMe-TCP offloading, with a maximal possible
rate of the drive’s optimal read bandwidth: 2.67 GB/s (≈21.38 Gbps). In C2, all of the
drive’s relevant data already resides in the server’s page cache, and so it is not read
from the remote drive while nginx is operational. C2 stresses TLS offloading, with a
maximal possible rate of 100 Gbps, our NIC’s line rate.
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Individual Offloads Figure 3.11a shows the http throughput of nginx in C1, with and
without the NVMe-TCP offload. We replicate the microbenchmark methodology and
limit system activity at the server to one core (which becomes 100% busy as a result).
The outcome turns out qualitatively similar: throughput improvements range between
4%–44% and are correlated with the size of the requested files. In Figure 3.11b and
Figure 3.11c, we allow server activity to utilize up to eight cores, which is enough
computational power for nginx to be able to fully utilize the remote drive’s bandwidth.
When maximal bandwidth is reached, NVMe-TCP offload improvements manifest in
up to 27% reduced CPU consumption.

We repeat the above experiment in C2 (data in page cache) using four different
setups: (1) “https” employs the baseline, KTLS sendfile with AES-NI crypto oper-
ations without any offloads; (2) “offload” improves the baseline by adding TLS of-
fload; (3) “offload+zc” further improves it by instructing TLS to refrain from making
copies and instead send files directly from the page cache in a zero-copy (“zc”) man-
ner (making it the responsibility of users to avoid changing files while transmitted);
and (4) “http” sends unencrypted text and thus serves as an upper bound on improve-
ments.

Figure 3.12 shows the results. With one core, offload and offload+zc deliver 7%–
70% and 11%–2.7x higher throughput as compared to https, respectively. With eight
cores, they reduce CPU consumption by 0%–2% and 0%–23%, respectively. Offload+zc
delivers 88% higher throughput when reaching the NIC line rate. Offload+zc through-
put is within 25%–28% of http throughput with one core, and it consumes 23% more
CPU cycles with eight cores when using 256 KiB files. Interestingly, for smaller files,
offload+zc consumes 3% less CPU than http. This happens due to TCP batching effects,
which cause http to utilize more, smaller packets for sending.

Overall, offloading eliminates the per-byte cost of the data manipulation, leaving
only per-packet costs. This can be seen in the smaller files (size between 128B–1024B),
where per-byte costs are small and so offloading yields only a small improvement of
0%–10% and 0%–4% in throughput and CPU consumption, respectively.

Combined Offloads To combine the NVMe-TCP and TLS offloads (together denoted
“NVMe-TLS”), we add TLS support in NVMe-TCP Linux subsystem (210 LoC, not yet
upstreamed). We evaluate nginx and RoF in the C1 configuration. In the RoF experi-
ment, we run one RoF instance per core and use the memtier [253] “get” workload to
drive the instances with 8 concurrent request-response connections per instance.

Figure 3.13 shows the outcome for nginx. It is qualitatively consistent with the
previous results that were bounded by the drive’s bandwidth (Figure 3.11, which was
dedicated to the NVMe-TCP offload). But the quantitative improvement of the offload
combination is more substantial. For example, with a single core and an I/O size of
256 KiB, the improvement provided by the NVMe-TLS offload is 4.0x bigger than that
of the NVMe-TCP offload (44% vs. 180%≡2.0x).

Figure 3.14 shows the benefit of NVMe-TLS offloading for RoF. When comparing it
to the corresponding single-offload RoF experiment (not shown), we find that the im-
provement is 4.6x bigger (28% vs. 130%≡2.3x), similarly to the aforementioned nginx
ratio.
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Table 3.3: Average latency in µsec for a single, synchronous request when cumulatively
adding our L5P autonomous offloads. Values in parentheses show relative latency as
compared to the baseline. Values to the right of the ± sign show standard deviation in
percentages.

size base +TLS +copy +CRC
4K 169±0.6 167±0.4 (0.99) 165±0.3 (0.98) 165±0.5 (0.98)

16K 221±0.5 210±0.5 (0.95) 204±0.3 (0.92) 200±0.4 (0.90)
64K 466±0.5 396±0.5 (0.85) 376±0.3 (0.81) 365±0.2 (0.78)

256K 1321±5.1 1056±0.5 (0.80) 980±0.0 (0.74) 941±0.4 (0.71)

So far, our workloads have been throughput-oriented. In Table 3.3, we show the
average latency of a single http GET request (single connection) for multiple offload
combinations. In particular, we cumulatively add to the baseline configuration the TLS
offload, then the NVMe-TCP copy offload, and then the NVMe-TCP CRC offload. TLS
symmetric crypto is much costlier than copying and CRC-ing, so the corresponding of-
fload unsurprisingly achieves the majority of the benefit: a 1%–19% latency reduction.
The NVMe-TCP offloads then reduces the latency further by 1%–9% percentage points.
As before, bigger requests benefit more.

3.5.4 Reordering and Loss

Out-of-sequence TCP packets (caused by reordering and loss) make our autonomous
offloads less effective and imply that NICs and/or CPUs must work harder. Fig-
ure 3.15a depicts the effect of gradually increasing packet loss rate on a single sender
core transmitting through 128 iperf streams at 100% CPU utilization. We use loss rates
between 0%–5% because on the internet, loss rate is typically≤2% [254] and reordering
is likewise ≤2% [255]. (In datacenters, loss can largely be avoided with DCTCP [256]).
On transmit, we can see that TLS offload performance is close to regular TCP perfor-
mance, delivering throughput that is within 8%–11% of plain TCP. The benefit of of-
floading compared to software TLS becomes smaller as loss increases, but it neverthe-
less remains non-negligible, with a minimal 33% improvement at 5% loss. Figure 3.15b
reports the internal interconnect bandwidth that the NIC consumes when reading data
from memory to reconstruct its contexts (in percents out of the total gen3 x16 PCIe
available bandwidth). The figure shows that even with 5% loss, context recovery costs
no more than 2.5% of total PCIe bandwidth.

Figure 3.16a and Figure 3.17a show the results of conducting the same experiment
but with a receiver using loss and reordering, respectively. Loss and reordering are
much costlier at the receiving end when offloading, which is why the corresponding
curves rapidly get closer to the software TLS curve. Recall that each out-of-sequence
(reordered or retransmitted) packet implies that the encapsulating TLS record will not
be offloaded. Figure 3.16b and Figure 3.17b classify TLS records into three: offloaded
(no packet in the record was out-of-sequence), partially offloaded (some were out-of-
sequence), and not offloaded. Even with 5% loss, we see that more than half of the
records are fully offloaded, which highlights the effectiveness of the NIC’s context re-
covery. Figure 3.16a indeed shows that offloading still yields a non-negligible through-
put improvement of 19% with the highest packet loss rate. With reordering of even 2%
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, unlike loss, we see that only 24% of the records are fully offloaded, and with 5%
almost no TLS record is offloaded(≤ 2%). Nevertheless, Figure 3.17a shows that of-
floading yields a 9% improvement in throughput with 2% of packet reordering, and in
the worst case (5%), performance is still as good as software tls.

3.5.5 Scalability

Autonomous NIC offloads use per-flow state stored in NIC caches to perform well.
But NIC caches are inherently limited. They can be exhausted when serving a few
thousands of flows, triggering flow state eviction into main memory, which later incurs
costly DMA operations over PCIe upon state reuse. For this reason, previous studies
indicated that RDMA (which also uses per-flow state) does not scale well [257, 258].
The question is: do autonomous offloads suffer from the same problem as the number
of connections exceeds the capacity of the NIC caches?

To answer this question, we add another generator machine and connect it to the
server using its ConnectX6-Dx second port. (As it happens, using two ports allows the
throughput to exceed 100 Gbps somewhat.) We repeat the nginx experiment involving
TLS offloading with eight cores and 256 KiB files in C2 (data in page cache). But this
time, we increase the number of connections, exponentially, from 64 to 128 K. With
4 MiB of on-NIC memory and 208 B per-flow state, the NIC can store at most 20 K flows,
ignoring memory used for other resources such as packet queues.

Figure 3.18 shows the results. As the number of connections increases, CPU uti-
lization likewise increases until the CPU becomes the bottleneck. Contributing to the
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increased utilization is the fact that TCP packet batching becomes less effective with
more connections: from 48 packets per batch with 128 connections, to only 8 packets
per batch with 128 K connections.

Observe that for low connection counts, https and offload performance is not visi-
bly bottlenecked on neither the CPU nor the NIC. This anomaly happens due to imbal-
anced request spreading that results in some underutilized cores.

In all measurements, offload+zc throughput is within 10% of http throughput, and
it consumes at most 1.25x more CPU; offload and offload+zc deliver 32%–63% and
53%–94% higher throughput as compared to https, respectively.

Overall, our workload scales reasonably despite the inherent cache contention prob-
lem at the NIC caused by the growing aggregated size of per-flow state. These scala-
bility results disagree with that of certain previous studies [257, 258]. We find that the
reason for this disagreement is packet batching, which is dominant in our workloads
(at least 8 packets per batch), as they involve bigger message sizes. In contract, the
cited previous studies focus on smaller messages. More specifically, as the flow state
size exceeds the NIC’s cache capacity, each newly serviced packet might in principle
trigger a cache miss and a costly memory access. But only the first packet in the batch
incurs this cost, whereas subsequent packets do enjoy temporal locality. (We remark
that batching might not be dominant if nginx is made to serve only small files. In this
case, however, the workload ceases to be data-intensive and is thus outside the scope
of our work.)

When comparing our work to the aforementioned previous studies [257, 258], it
should also be noted that we use more recent NICs and thus benefit from their im-
proved cache management and increased parallelism, which, similarly to batching,
help hide cache miss latencies as demonstrated by a more recent NIC scalability study [259].

3.6 Applicability

Next, we further discuss the applicability of autonomous offloads to additional com-
putations and protocols.
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Decompression and deserialization As discussed in §3.2.1, non-size-preserving op-
erations preclude offloading when sending, but not when receiving. A non-sized-
preserving operation can be performed on receive by having the NIC write the of-
floaded operation’s results to pre-allocated buffers (set up by the L5P) while also writ-
ing the original packet data as-is to the driver’s receive ring. The driver will pass
packets with offload results as metadata up to the network stack. Later, L5P software
will skip performing the offloaded operation if all the packets in the message were
offloaded; otherwise, it will fall back to software using the original packet data.

As mentioned above, we require pre-allocated buffers to offload non-size-preserving
computation. To pre-allocate these buffers, we need to have either (1) predetermined
response sizes, as in the NVMe-TCP protocol, or (2) maximum message size limits en-
forced by the implementations, such as in HTTP servers that limit request headers to
16 KB.

We note that in contrast to copy, encryption, and digest offloads, which pass packet
data through PCIe and memory only once, non-size-preserving offloads will pass packet
data through PCIe and memory twice: (1) offload results and (2) original packet data
that is needed only for software fallback processing. Nevertheless, this is still better
than off-CPU accelerators that pass data three times: (1) from the network; (2) to the
off-CPU accelerator; and (3) from the off-CPU accelerator.

Pattern matching Deep packet inspection (DPI) software looks for known patterns in
packet payloads using either fixed-length string pattern matching or regular expres-
sion matching. Patterns are matched only within L5P messages and never across mes-
sages. Thus, these computations fit our offload properties and we can autonomously
offloaded them as follows: for each packet, check if some pattern match completes
within it using the per-flow context to track pattern matches across packets. If yes, re-
port the match with metadata to indicate the pattern; otherwise, report that the packet
contains no match. Later, DPI software inspects packets in-order and if all packets of an
L5P message are marked by the NIC, then report results according to offload metadata.
Otherwise, if some packet bypassed NIC offload, perform DPI in software.

Not restricted to TCP This work focuses on L5Ps built on top of TCP. But autonomous
offloading is, in fact, orthogonal to the specific layer-4 protocol that is being used.
Namely, an L5P is autonomously offloadable if it has the properties defined in §3.3,
regardless of the specific underlying layer-4 that it is built upon. The reason we have
chosen to focus on TCP (in addition to its popularity) is because its properties make it
the most challenging to autonomously offload. All the other layer-4 protocols that we
are aware of can be either similarly offloaded or are easier to offload.

Consider, e.g., a simple L5P that is built on top of UDP and directly mirrors its
properties. A message of this L5P is therefore a datagram that is entirely contained in
a UDP packet; the message might get lost or be handed to the receiving end out-of-
order. For example, DTLS (Datagram Transport Layer Security [260]) is such an L5P,
as it only encrypts and decrypts UDP packets. Autonomously offloading this type of
L5Ps is trivial and does not merit an academic publication (we indeed do not consider
it part of our contribution). Because the NIC operates on individual, self-contained
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datagrams, it never has to worry about such issues as losing and having to reconstruct
its position in the sequence due to packet reordering and loss. Falling back on L5P
software processing is likewise never needed: the NIC always knows what to do next,
since all the information required for acceleration is encapsulated inside the currently-
processed incoming or outgoing datagram.

The main contribution of this work is coming up with a way to autonomously of-
fload a more sophisticated type of protocols—those that provide some stream abstrac-
tion for their users. The challenging aspect in autonomously offloading such protocols
is that an L5P message can be spread across multiple packets in the stream with no
alignment between L5P messages and packets, making it challenging for the NIC to
identify L5P message boundaries in the face of packet reordering and loss.

SCTP (Stream Control Transmission Protocol [261]) can be viewed as an L5P that
uses UDP to provide reliable, in-sequence delivery of a stream of messages with con-
gestion control. SCTP divides messages into “chunks,” such that each chunk is entirely
contained in a UDP packet along with its own header. A chunk header indicates, in
particular, whether the associated data starts a new SCTP message. Therefore, au-
tonomously offloading SCTP is similar to, but easier than TCP-based offloads, because
the NIC can identify message beginnings within packets in a deterministic manner,
ridding it from the need to speculate using magic patterns.

QUIC [262] is an emerging protocol that provides a stream abstraction. It is capable
of multiplexing multiple byte streams on top of encrypted UDP packets. Each packet
contains one or more “frames” that corresponds to some byte stream. A QUIC au-
tonomous offload must be able to encrypt and decrypt the packets. (Simpler than TLS
offloading, as it is done per UDP packet.) Then, given access to the frames’ content,
all autonomously offloadable operations become relevant: copy to avoid L5P message
reassembly, decompression (e.g., QPACK [263]), pattern matching, etc.
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The I/O Working Set Problem

4.1 Background: The NIC-CPU Interface Today

Software interacts with NICs via per-core logically cyclic arrays called receive (Rx) and
transmit (Tx) rings. We focus on Rx rings as they dictate the I/O working set (see §4.2).
The NIC spreads incoming traffic among cores using receive side scaling (RSS [24]).
With RSS, when a packet arrives from the network, the NIC selects its destination Rx
ring according to a hash computed over packet header fields.

Rx rings combine two producer-consumer functionalities: (1) software producing
empty buffers for the NIC to consume by storing incoming packets (memory alloca-
tion) and (2) the NIC producing incoming packets for software to consume (packet
reception).

Software initially chooses the Rx rings’ size and allocates them in main memory.
Ring entries are architectural descriptor structures with several fields, one of which
is a packet buffer pointer. Software prepopulates all Rx descriptors with MTU-sized
buffers. When a packet targeting the ring arrives, the NIC DMA-writes it to the buffer
pointed to by the head (“next empty”) descriptor index, incrementing it to point to the
subsequent descriptor if it does not surpass the tail (“next full”) descriptor index. Soft-
ware consumes packets from the Rx ring in the same cyclic order. It iteratively swaps
the tail descriptor’s buffer (containing a newly delivered packet) with a new empty
buffer and then increments the tail (if it does not surpass the head).

Software informs the NIC about new free buffers (ring tail advances) by means of
an MMIO write to a NIC register, known as “ringing a doorbell.” In contrast, software
does not poll the ring head to detect new packets, as such polling would result in cache
line bounces between the NIC and the CPU (if the head were stored in memory) or
expensive MMIO reads (if it were stored in a NIC register). Instead, the NIC informs
software of produced packets by means of a cache-friendly memory-based protocol,
described next.

Completion Rings Modern NICs notify software of delivered packets via per-core,
in-memory completion ring (CR) structures [144,232,264,265]. CRs, like descriptor rings,
are circular buffers. Each CR is associated with one or more descriptor rings. CR entries
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indicate which Rx ring descriptors are ready for software processing by providing their
ring and index.

To optimize cache coherence traffic, the NIC only writes CR entries and software
only reads them. The NIC and software coordinate CR access with a sense reverse in-
dication mechanism [266]. Each CR entry contains a “done” bit, indicating to software
that the entry is ready for processing. The flag value used for this indication alternates
on each pass through the ring: it is 1 on odd passes and 0 on even passes. Both the
NIC and software internally maintain a “generation” bit for the current value. Soft-
ware checks for new packets by polling the head CR entry, comparing its “done” bit
with the “generation” bit.

Figure 4.1 depicts packet reception with CRs. Initially (Figure 4.1a), three pack-
ets arrive for a core whose Rx and completion rings are empty. Packet delivery (Fig-
ure 4.1b) consists of (1) the NIC using RSS to find the Rx and completion ring matching
the packet; (2) writing the packet to an Rx descriptor, and (3) writing a CR entry, indi-
cating the index of the Rx descriptor that holds the packet. These entries have “done”
set to 1, because the CR’s generation is 1. Packet processing (Figure 4.1c) occurs when
the core, polling the head CR entry, notices its “done” flag has changed. It starts travers-
ing “done” CR entries, processing packets pointed to by the Rx descriptors indicated
by them, replenishing these buffers, and advancing both rings’ tails. Once the core
reaches a CR entry with “done” set to 0, it stops and resumes polling the CR.

We remark that a separate CR is used instead of piggybacking this protocol on Rx
descriptors to avoid having both the NIC and software writing to the same cache line
concurrently (by updating different descriptors in the same cache line), which creates
cache contention and hazards [267].

4.2 The I/O Working Set Problem

Network-intensive applications depend on DDIO [43] and similar technologies to keep
up with network rates of hundreds of Gbps as well as for low-latency packet process-
ing. DDIO enables DMAs by I/O devices to go directly to/from the CPU’s LLC, if
possible, instead of main memory. With DDIO, DMA reads are fulfilled by the LLC if
the associated bytes are there and DMA writes overwrite bytes that already reside in
the LLC. DMA writes can also allocate new cache lines in up to two LLC ways, evicting
other data in the process.

DDIO’s effectiveness depends on the size of the I/O working set, which is defined as
the memory areas that are DMAed by an I/O device during some time interval [268].
The I/O working set of an I/O intensive workload exceeding the LLC’s capacity leads
to the “leaky DMA” problem [97, 164], wherein new packets written by the NIC evict
not-yet-processed packets from LLC. Consequently, CPU accesses to packet data slow
down due to being served from main memory, which may even become a bottleneck
resource [75, 97–101, 172, 269–272]. In particular, if the slower packet processing makes
a core unable to keep up with the packet arrival rate, its Rx ring will fill up, causing
latency to become linear in the ring size.

Ideally, the I/O working set would depend only on software processing time, i.e.,
buffers could be reused by the NIC immediately when released by software. However,
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Figure 4.1: PrivRing packet reception using a single private receive ring with its com-
pletion ring. Highlighted regions indicates changes relative to the previous stage. For
simplicity, we depict only the Rx ring’s head and tail positions, assuming identical
head/tail positions in the CR (which is not necessary the case).
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the NIC interface creates a dependency on the number (N) and size (R) of Rx rings. Rx
rings are prepopulated with buffers, and as ring descriptors are cyclically accessed, an
Rx buffer b can be reused only after the NIC uses all other buffers in the ring—even if
software has released b earlier. In contrast, Tx rings contain only in-flight packets, so
they are usually empty or partially full. Thus, the I/O working set size is at least the
union of all Rx buffers, which is of size |Rx| = N × R× 1500 B.

The growing gap between stagnant CPU speed and ever-increasing NIC bandwidth
results in |Rx| growing with hardware advances, thus exceeding LLC capacity [100,
268, 273]. The reason is that this gap requires increasing both the size R and number
N of the Rx rings, because: (1) packet bursts experienced by individual cores become
bigger and should be absorbed to avoid packet loss [274–276], and (2) packet processing
requires additional cycles, disallowing any single core from driving the NIC to its full
capacity [170, 271].

4.2.1 Implications

We demonstrate the I/O working set problem by evaluating the impact of increasing
the Rx ring size on a stateful load balancer (LB) network function (NF). In each exper-
iment, LB uses all cores of a 16-core CPU, which has a 22 MiB LLC and two 100 Gbps
NVIDIA ConnectX-5 NICs, and processes 1500 B packets. (§6.3 details the full experi-
mental setup.) Figure 4.2 shows that enlarging the I/O working set worsens through-
put by up to 0.8×, latency by up to 37× (due to rings filling, as explained above), and
memory bandwidth by up to 4.9×. Line rate throughput is achieved when the I/O
working set fits in the two LLC ways used by DDIO (ring size R ≤ 128). Results de-
grade in two steps: when the I/O working set exceeds the DDIO ways but fits in the
LLC (128 < R < 1024) and when it exceeds the LLC (R ≥1024). Other NF applications
(not shown) behave similarly.
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Small rings work well when traffic is spread across multiple cores but cause drops
otherwise.

One may wonder why NFs should use all cores, if the result is an excessive I/O
working set. The answer is that systems often do not have fixed workloads, and all
cores are necessary to maximize throughput in certain workloads. Figure 4.3 demon-
strates this issue by showing LB throughput under maximal rates of either 1500 B or
64 B packets, as the number of LB cores varies. For 1500 B packets, maximal through-
put is reached at 12 cores. But for 64 B packets, throughput peaks at 16 cores, as the
I/O working remains small. Thus, our goal is to address the I/O working set problem in the
most demanding cases—for the benefit of all workloads.

4.2.2 Shortcomings of Existing Solutions

We discuss various approaches for shrinking the I/O working set to fit in the LLC and
explain why they are unsatisfactory.

Few Dispatchers This approach, showcased by Shinjuku [269] and Shenango [172],
uses a few “dispatcher” cores, each with a large Rx ring, to distribute packets among
the remaining worker cores. While such systems can saturate ≈40 GbE links, the dis-
patcher cores become the bottleneck as link speeds increase to 100 Gbps and beyond [170].

Small Private Rings A privRing system can employ smaller per-core rings, such that
the I/O working set fits in the LLC. However, decreasing the Rx ring size below the
default (1 Ki) makes rings unable to absorb packet bursts, resulting in packet loss that
degrades the performance of loss sensitive protocols such as TCP. We show this in
two experiments: DPDK layer-3 forwarding (l3fwd), which we load using MTU-sized
packets with the RFC2544 no-drop rate benchmark [138], and TCP netperf stream [40].
We test both with all traffic directed at a single receiver core (“single core”) and then
with traffic spread across 8 receiver cores (“multicore”).

The results in Figure 4.4 demonstrate that small rings work well for multicore, be-
cause load and queuing are spread evenly between the individual cores and rings. But
in the single core case, representing an individual core’s capacity, rings smaller than
1 Ki result in packets drops and throughput loss.



Chapter 5

ShRing: Networking with
Shared Receive Rings

Multicore systems parallelize to accommodate incoming Ethernet traffic, allocating one
receive (Rx) ring with >=1Ki entries per core by default. This ring size is sufficient to
absorb packet bursts of single-core workloads. But the combined size of all Rx buffers
(pointed to by all Rx rings) can exceed the size of the last-level cache. We observe that,
in this case, NIC and CPU memory accesses are increasingly served by main memory,
which might incur nonnegligible overheads when scaling to hundreds of incoming
gigabits per second.

To alleviate this problem, we propose "shRing," which shares each Rx ring among
several cores when networking memory bandwidth consumption is high. ShRing thus
adds software synchronization costs, but this overhead is offset by the smaller mem-
ory footprint. We show that, consequently, shRing increases the throughput of NFV
workloads by up to 1.27x, and that it reduces their latency by up to 38x. The substan-
tial latency reduction occurs when shRing shortens the per-packet processing time to
a value smaller than the packet interarrival time, thereby preventing overload condi-
tions.

5.1 ShRing’s Design and Implementation

ShRing is an architecture for driving high bandwidth NICs. Instead of using private
per-core default-sized Rx rings, it shares each default-sized Rx ring between a set of
cores. (ShRing leaves the Tx path unmodified.) ShRing can improve throughput, la-
tency, or both, depending on the workload (§5.1.1).

Sharing a receive ring among cores requires us to synchronize the ring accesses of
the CPU (using locks or atomic instructions), which incurs overhead compared to the
synchronization-free privRing. ShRing curbs this overhead by limiting the number of
cores sharing a ring to N; we use N=8, but other values may work better for other
setups. Also, shRing reduces synchronization overhead by leveraging per-core com-
pletion rings (CRs) with which the NIC spreads incoming packets between cores [144],
ridding them from having to compete for newly arriving packets (§5.1.2). As a result,

69



70

shRing’s benefits outweigh its synchronization costs for workloads that suffer from
ineffective DDIO use.

We propose two shRing designs that represent the ring as an array (RxArr, §5.1.3)
or a linked list (RxList, §5.1.4). Both can be implemented with recent NVIDIA NICs.
RxArr’s synchronization is costlier, but RxList’s interferes with the NIC’s Rx entry
prefetching, so we rule it out (but propose a modest NIC ASIC modification that will
fix this problem).

ShRing dynamically turns itself on/off depending on whether or not the workload
is benefiting from it (§5.1.5). We describe the implementation details in §5.1.6.

5.1.1 Benefits and Constraints

ShRing can improve throughput and/or latency, depending on the workload. Next,
we define the workload properties necessary for shRing to be advantageous, and we
explain the expected benefits of shRing and how it provides them. When shRing is
counterproductive (necessary properties are absent), it dynamically disables itself.

ShRing is relevant only for workloads that avoid pathological core overload, where
a subset of the sharing cores are continuously overloaded while their peers are un-
derloaded. Pathological conditions may occur due to continuous, highly skewed per-
packet processing time differences, or because of chronic incoming traffic imbalance.
For reasons detailed later on (§5.1.5), when cores share a ring under pathological con-
ditions, the fact that only some of them are overloaded implies that the packets of the
overloaded cores increasingly and disproportionately accumulate within the ring, to
the point that no room is left for packets of underloaded cores. This pathology causes
new packets directed at underloaded cores to get dropped despite there being available
processing capacity.

We term these conditions “pathological” because (1) they are suboptimal and may
indicate the system is misconfigured, and (2) they are atypical when measuring NFV
performance, as many NFV studies [99,132–137] and IETF benchmarking methodology
[138] generate packet headers using randomization, balancing load across cores with
hash-based packet spreading (e.g., RSS).

Throughput ShRing improves a workload’s throughput if (1) its I/O working set
with privRing exceeds the LLC DDIO capacity and (2) the penalty of the resulting
cache misses is non-negligible compared to the overall packet processing time. Relative
to privRing, shRing multiplicatively decreases the number of rings by a factor equal to
the number of cores sharing each Rx ring (N=8 in our case). This decrease results in a
corresponding 1/N reduction of the I/O working set, possibly to below the LLC DDIO
capacity. ShRing therefore mitigates and possibly eliminates the I/O-related cache miss
penalty and thus enables more effective packet processing.

Latency ShRing improves a workload’s latency if the associated cores are saturated
because packet service rate (number of packets processed per second, denoted µ) is
smaller than packet arrival rate (number of packets arriving per second, denoted λ).
Latency is linear in the ring size s in this case, as queuing theory dictates that µ <
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λ implies fully occupied Rx rings, which means every newly arriving packet waits
for s − 1 preceding packets to be processed. But in contrast to privRing, where each
core has its own default-sized ring, shRing shares each such ring between N cores,
so the “effective” ring capacity that each core experiences is s/N, which means the
latency proportionally becomes 1/N smaller (recall that we assume no pathological
core imbalance).

Moreover, whenever shRing improves throughput, it also improves latency, as this
throughput improvement stems from making the per-packet processing time (Pt) shorter.
Notably, if shRing’s shorter Pt transforms the overall service rate from slower than ar-
rival rate (under privRing) to faster (µ > λ instead of µ < λ), queuing theory says
that Rx ring occupancy drops from fully to barely occupied. Namely, latency drops
sharply, essentially becoming O(Pt) with shRing instead of O(Pt × s) with privRing.
This shRing property underlies Figure 5.7g.

5.1.2 Synchronization with Completion Rings

In principle, N cores may share a receive ring by synchronously accessing the ring’s
head. But this approach creates a synchronization bottleneck [26,132,141–143]. ShRing
sidesteps this problem by reusing RSS to spread incoming packets between different
sharing cores (in addition to spreading them between different rings, which is the usual
role of RSS). So when the NIC stores incoming packets in a shared ring, it communi-
cates to each of the N sharing cores which packets belong to that core via a per-core
completion ring (CR), as depicted in Figure 5.1.

A CR is a circular array in host memory. There are N CRs associated with each
shared ring R: one for each core C that shares R. The CR stores indexes of R’s packet
descriptors, specifying which descriptors are ready to be processed by C. Similarly
to descriptor rings, a CR has head/tail entries whose indexes reside in NIC memory.
When the NIC stores in R an incoming packet P that is mapped to core C, it writes the
index of P’s descriptor to the tail of C’s CR and advances this tail. To receive packets,
C polls its CR head awaiting notification about the next available packet in R. When C
removes this packet from R, it advances its CR head.

Thus, per-core CRs allow cores to poll without synchronizing with their peers. CRs
negligibly increase the I/O working set size, as a CR entry occupies only a single cache-
line (for storing metadata about the associated packet, such as size and header offsets).
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Nonetheless, CRs do not obviate the need for synchronization when a core reposts a
descriptor for the NIC to consume. RxList and RxArr address this synchronization
problem in different ways.

NIC Support Recent NVIDIA NICs already support associating multiple CRs with a
shared Rx ring as part of a shared receive queue (SRQ) buffers feature [144, 277]. The
motivation for this feature is reducing DRAM pinning for RDMA (see §5.4), as opposed
to shRing’s goal of improving throughput and latency for Ethernet.

We expect support for Ethernet Rx ring sharing among CRs to become widely avail-
able in the future, because it is included in the infrastructure datapath function (IDPF)
specification [278] and the Open Compute Project NIC specification [279], which are
proposed industry standards for network device interfaces.

5.1.3 Array Ring Sharing (RxArr)

In the baseline privRing, each core C processes and reposts descriptors of its private
ring in array order, one after the other. Namely, after C processes a descriptor Di, it
reposts Di by advancing the head of the ring past Di to Di+1, thereby indicating that Di
can be reused by the NIC to store some other incoming packet in the future.

In contrast, RxArr shRing implements a ring array that is shared between N cores. It
therefore cannot automatically advance the ring’s head in this way, as Di might become
ready for reuse before its k preceding descriptors {Dj}

j=i−1
j=i−k . For example, if they were

assigned to cores different than C and require a longer processing time as compared to
Di. Or if RSS happened to assign all of them to some other core C′, which must now
work harder than C to catch up.

RxArr must thus guarantee that the NIC is notified that Di can be reused only when
all preceding descriptors are also ready for reuse. For this purpose, RxArr maintains
a bitmap with a bit per descriptor, tracking which ring descriptors between head and
tail have been processed and made available for reuse. After core C consumes Di and
re-arms it with a new empty buffer, C (1) atomically sets bit i in this bitmap, (2) consults
the bitmap to find the maximal contiguous sequence of descriptors available for reuse
beginning at the head {Dj}

j=maxContig
j=head , and (3) atomically clears the corresponding bits

and advances the head past them.
The drawback of RxArr is its synchronization overhead, as its bitmap is a shared

and frequently updated data structure that requires core coordination. Also, RxArr is
suboptimal in that it delays the reuse of descriptors made ready by some cores, if prior
descriptors have not yet been processed by other cores. Conceivably, packet loss might
occur under RxArr despite available CPU and buffer capacity. In the privRing baseline,
in contrast, ready descriptors reside in different rings and so the NIC can reuse them
as they become available.

Listing 5.1 shows the RxArr receive function, which dequeues a batch of packets for
processing. It receives a shared descriptor ring (sd_ring), the calling core’s CR (c_ring
completion ring), and an output array of packet pointers (pkts) of length len. It returns
the number of received packets. Lines 10–15 poll the CR to find the location of a ready
descriptor assigned to the calling core and store the descriptor’s buffer in the output
array, replacing this buffer with a new one. Lines 16–22 mark received descriptors in
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1 # def ine BIT ( x ) (1 << ( ( x ) & 6 3 ) )
2 # def ine WORD( x ) ( ( x ) >> 6)
3 # def ine ISSET (bmp, x ) \
4 (bmp[WORD( x & (bmp−> s i z e − 1 ) ) ] & BIT ( x ) )
5 i n t shRing ( sd_ring * sdr , c_r ing * cr ,
6 void * * pkts , i n t len ) {
7 i n t rcvd = 0 , l i d x = −1;
8 u i n t _ 6 4 t l b i t s = 0
9 while ( rcvd < len ) {

10 c_r ing_ent * cre = g e t _ c r e ( cr ) ;
11 i f ( c re == NULL)
12 break ;
13 i n t idx = cre −>idx ;
14 pkts [ rcvd ++] = sdr −>desc [ idx ] . buf ;
15 sdr −>desc [ idx ] . buf = a l l o c _ b u f ( ) ;
16 i f ( l i d x == −1) l i d x = WORD( idx ) ;
17 e l s e i f ( l i d x == WORD( idx ) ) {
18 atomic_or (&sdr −>bitmap [ l i d x ] , l b i t s ) ;
19 l i d x = WORD( idx ) ;
20 l b i t s = 0 ;
21 }
22 l b i t s |= BIT ( idx ) ;
23 }
24 i f ( rcvd == 0) re turn 0 ;
25 i f ( l b i t s != 0)
26 atomic_or (&sdr −>bitmap [ l i d x ] , l b i t s ) ;
27 cr −> c i += rcvd ;
28 * cr −>doorbe l l = cq−> c i ;
29 lock ( sdr −>lock ) ;
30 while ( ISSET ( sdr −>bitmap , sdr −> c i ) != 0) {
31 se tb = f f s (~ sdr −>bitmap [WORD( sdr −> c i ) ] ) ;
32 a tomic_c lear (&sdr −>bitmap [WORD( sdr −> c i ) ] ,
33 se tb − 1 ) ;
34 sdr −> c i += se tb − 1 ;
35 }
36 * sdr −>doorbe l l = sdr −> c i ;
37 unlock ( sdr −>lock ) ;
38 re turn rcvd ;
39 }

Listing 5.1: RxArr shared ring receive code.
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the shared bitmap (sdr->bitmap) while batching updates within 64-bit words. This
is done using atomic instructions, as other cores may be concurrently setting/clearing
other bits in the bitmap. Line 24 handles the corner case of an empty CR. Lines 25–26
handle the remaining accumulated bitmap updates after exiting the loop. Lines 27–28
ring the CR’s doorbell.

Lines 29–37 identify the maximal contiguous sequence of descriptors beginning at
the ring head that is available for reuse, notifying the NIC about them. These opera-
tions are performed under a lock to guarantee the atomicity of (1) inspecting and mod-
ifying the bitmap and of (2) notifying the NIC. Line 31 uses the find-first-set instruction
to identify the contiguous set bits. Lines 32–33 atomically clear them. Finally, Line 34
advances the ring’s head (consumer index, sdr->ci) accordingly, and Line 36 writes
the updated head to the shared ring’s doorbell.

5.1.4 Linked List Ring Sharing (RxList)

RxList is a shRing design that alleviates RxArr’s bitmap coordination problem, elimi-
nating the requirement to repost descriptors in array order. To this end, RxList repre-
sents the empty packet buffer descriptor queue as a linked list. The NIC correspond-
ingly follows list order when storing incoming packets. The list itself is overlaid on the
Rx descriptor array, with each descriptor holding a “next” field pointing to the next list
item. (Linked list functionality is part of the SRQ feature [280].) Initially, each descrip-
tor points to the subsequent descriptor in the array. But as packet processing occurs
and cores process and repost descriptors out of array order, the descriptor order in the
list changes. We denote the first and last descriptors in the empty descriptor list as
hwHead and hwTail, respectively, to distinguish them from the “head” and “tail” used
in the rest of the work to describe the first and last descriptors holding packets.

Figure 5.2a depicts RxList’s structure using three cores sharing a single Rx ring. Ob-
serve that RxList’s descriptor ring entries are not contiguous: there are multiple non-
vacant descriptors in the array between hwHead and its successor vacant descriptor in
the list, which is impossible in an array-based design. The figure also shows dashed
links between non-vacant descriptors. These represent the order in which these de-
scriptors were filled by the NIC, i.e., their order in the list when they were vacant.

We now detail RxList’s receive flow, whose code is shown in Listing 5.2. The func-
tion’s inputs and outputs are the same as RxArr’s receive function. Lines 5–10 batch
packets for processing exactly as in RxArr: the completion ring is polled to find the lo-
cation of ready descriptors, each such descriptor’s buffer is stored in the packet output
array, and the descriptor’s buffer is replaced with a new buffer. Lines 11–13 are unique
to RxList: they link dequeued descriptors one after the other, creating a linked list that
will eventually be appended to the tail of the empty descriptor list. Lines 15–17 are
again standard functionality. First, the case of an empty completion ring is checked,
and then the core’s completion ring head (denoted ci, or consumer index) is updated,
including a notification to the NIC via a doorbell MMIO write. Lines 18–24 are again
new to RxList. They lock the shared descriptor ring to atomically (1) append the new
list created in lines 11–13 after the tail of the list and (2) notify the NIC, via a doorbell
write, of the number of descriptors with empty buffers that are appended to the list.
Finally, line 25 returns the number of received packets.
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1 i n t l l _ r e c v ( sd_ring * sdr , c_r ing * cr ,
2 void * * pkts , i n t len ) {
3 i n t idx , rcvd = 0 , myhead , * i p t r = NULL;
4 while ( rcvd < len ) {
5 c_r ing_ent * cre = g e t _ c r e ( cr ) ;
6 i f ( c re == NULL)
7 break ;
8 idx = cre −>idx ;
9 pkts [ rcvd ++] = sdr −>desc [ idx ] . buf ;

10 sdr −>desc [ idx ] . buf = a l l o c _ b u f ( ) ;
11 i f ( i p t r == NULL) myhead = idx ;
12 e l s e i p t r −>next = idx ;
13 i p t r = &sdr −>desc [ idx ] ;
14 }
15 i f ( rcvd == 0) re turn 0 ;
16 cr −> c i += rcvd ;
17 * cr −>doorbe l l = cq−> c i ;
18 lock ( sdr −>lock ) ;
19 i n t p r e v t a i l = sdr −>hwTail ;
20 sdr −>desc [ p r e v t a i l ] . next = myhead ;
21 sdr −>hwTail = idx ;
22 sdr −> c i += rcvd ;
23 * sdr −>doorbe l l = sdr −> c i ;
24 unlock ( sdr −>lock ) ;
25 re turn rcvd ;
26 }

Listing 5.2: RxList (linked list) shared ring receive code.

Prefetching Problem We find that RxList neutralizes descriptor prefetching, an im-
portant NIC performance optimization. Because descriptor rings are typically stored
contiguously, the NIC reads sequences of contiguous descriptors in a single PCIe read
transaction and caches valid descriptors in NIC memory to improve throughput and
reduce latency for subsequent packets. When descriptors are linked out of array order,
the NIC fails to find the next descriptor on the list in its on-NIC cache, resulting in more
descriptor DMA reads being required.

Effective descriptor prefetching is critical for high PCIe-based NIC performance [171],
and even more crucial for shRing. In privRing, a descriptor cache miss on some ring
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does not stall incoming traffic destined to other rings, but with shRing there are fewer
rings and so more traffic is stalled.

To demonstrate this effect, we evaluate the performance of various descriptor ring
to core sharing ratios. We compare RxList to RxArr, in which the NIC follows descriptor
array order when storing packets. We run the synthetic NF (from §4.2.1) on all cores
and try to process traffic at line rate.

Figure 5.3a shows the throughput achieved by both designs. When there is no shar-
ing, then RxList, RxArr, and privRing (not shown) perform similarly (≈ 2%). This is
expected since in this case, all approaches maintain ordering within the single descrip-
tor ring. However, as we decrease the ring to core ratio, linked list descriptors become
reordered and RxList’s throughput declines sharply as sharing increases: 33% for 1:2
sharing ratio and 76% for 1:8 sharing ratio.

Figure 5.3b shows how costly out-of-order descriptors are, motivating RxArr. Specif-
ically, we report the NIC’s internal packet processing time, and see that for linked lists
this time grows as more cores share a descriptor ring: from 3.7 µs at 1 core per ring to
16.3 µs at 8. In contrast, RxArr performance remains the same regardless of the sharing
ratio.

Prefetching Solution We propose batched RxList, a shRing design that obtains RxList’s
resiliency against pathological core overload conditions without damaging the NIC’s
performance. Batched RxList amortizes the cost of locking and descriptor reordering in
RxList by batching packets to descriptors. In this design, depicted in Figure 5.2b, each
RxList descriptor points to a buffer that can hold multiple packets. For each RxList,
the NIC stores new packets destined to a core via the same descriptor used to store
previous packets for that core, provided that room remains in the descriptor’s packet
buffer. Only once this descriptor “fills up” will the NIC consume a new descriptor from
the list and start storing incoming packets for that core in the new descriptor’s buffer.
To perform this batching, the NIC caches the last Rx descriptor used for each CR asso-
ciated with the RxList. The NIC thus effectively maintains per-core “mini hwHeads”
pointing to each core’s current descriptor.

The benefit of the batched RxList design is twofold. From the NIC’s perspective,
batching packets in descriptors and caching the descriptors reduces the importance
of descriptor prefetching, as packets destined to a core experience a single cache miss
per batch. From the cores’ perspective, batching reduces RxList synchronization, as
locking the RxList to repost a descriptor is now guaranteed to occur only once per
batch, instead of potentially once per packet.

Although recent NICs support batching multiple packets in a single large descriptor
buffer [281], batched RxList requires NIC ASIC modifications to support a list consist-
ing of such descriptors. Therefore, we cannot evaluate batched RxList. We present this
design to underscore that RxList’s tradeoffs are likely not fundamental and are caused
by current NIC ASIC limitations, which can be fixed.

5.1.5 Dynamic ShRing

We propose a dynamic approach that switches between privRing and shRing during
run time, depending on which architecture is more beneficial at the moment. Our goal
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is to disable shRing if the workload experiences pathological core overload or if it is
not bottlenecked on I/O-related cache misses. We describe the heuristic we currently
use to identify these conditions. We leave improving the precision and robustness of
the heuristic for production use to future work.

Pathological Overload Pathological overloaded conditions can make overloaded cores
monopolize ring descriptors. If continuous, high per-packet processing time differ-
ences are such that the packet service rate of overloaded cores is smaller than their
packet arrival rate, queuing theory dictates that the Rx ring eventually becomes fully
occupied with their packets. If incoming traffic is chronically imbalanced, large batches
of packets destined to overloaded cores can arrive and occupy most if not all the de-
scriptors.

In both of the above scenarios, overloaded cores invoke their ring’s receive function
less frequently than underloaded cores. This is clearly the case for cores overloaded
due to high per-packet processing time, but also happens if overload is due to incom-
ing traffic imbalance. In this case, an overloaded core’s receive call produces a large
batch of packets, which takes the core longer to process before returning to the ring
to dequeue more packets. We detect overloaded cores based on this behavior, as ex-
plained below.

I/O-Related Cache Miss Significance Recall that under non-pathological conditions,
a workload will benefit from shRing if (1) its I/O working set with privRing exceeds the
LLC DDIO capacity and (2) the penalty of the resulting cache misses is non-negligible (§5.1.1).
We associate (1) with high memory bandwidth utilization and (2) with high network-
ing throughput.

Heuristic We measure throughput, memory bandwidth, and time between subse-
quent calls to the receive function and record the results in a sliding window of 16
entries. When more than half of throughput and memory bandwidth measurements
exceed a predefined threshold while no core is overloaded (calls receive infrequently
compared to other cores), we switch from privRing rings to shRing rings. To switch
back from shRing to privRing, we wait until 7

8 of measurements are below the thresh-
old

To switch between privRing and shRing, we pre-program two sets of RSS tables,
which are NIC data structures used to steer incoming packets to descriptor and com-
pletion rings based on packet headers. Each RSS table set points to its own set of rings,
i.e., privRing and shRing. Then, based on the heuristic’s decision, we update NIC steer-
ing rules to redirect packets to the appropriate RSS table set. After switching, before we
begin polling the new rings for packets, we drain remaining packets from the previous
ring set.

5.1.6 Implementation

Our implementation of RxArr and RxList targets 100 GbE NVIDIA NICs with unmodi-
fied ASICs. We initially relied on firmware patches to expose ring sharing mechanisms,
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originally aimed for InfiniBand RDMA (see §5.4), for Ethernet use. However, NVIDIA
NIC firmware now makes these mechanisms generally available.

We implement our designs with 2039 lines of code (LOC) in the NVIDIA DPDK
driver and only 137 LOC in DPDK’s core. We leverage DPDK’s command line driver
options to enable the desired ring sharing mechanism and to specify how many cores
share each ring. This approach enables unmodified DPDK-based applications to bene-
fit from shRing.

Dynamic shRing is implemented in a dedicated thread that runs every 10 ms on a
separate core which polls Intel PCM [161] counters for PCIe generated memory band-
width and NIC byte and packet counters. We expose PCM counters through a library
that we link with DPDK; the library is 116 LOC and the code using it in DPDK is
330 LOC. As the threshold for switching from privRing to shRing, we use throughput
greater than 170 Gbps, memory bandwidth greater than 25 GiB/s, and the standard de-
viation between calls to Rx functions being at most 32x larger than the median (where
32 is the maximum packet batch that shRing’s Rx functions can return). We experimen-
tally find that these values provide good results for the NFs we tested.

5.2 Evaluation

We evaluate shRing’s effectiveness using synthetic microbenchmarks as well as NAT
and LB macrobenchmarks. We measure the gains obtained with shRing’s efficient I/O
working set utilization in both non-pathological and pathological conditions (§5.1.1)
under 200 GbE load.

5.2.1 Methodology

Experimental Setup Our setup consists of two Dell PowerEdge R640 servers, con-
nected back-to-back via two pairs of 100 GbE NVIDIA ConnectX-5 NICs with pause
frames disabled. One server is the evaluated system and the other is the load gen-
erator. Both servers have 16-core 2.1 GHz Xeon Silver 4216 CPUs, 128 GiB (=4x16 GiB)
2933 MHz DDR4 memory, and a 22 MiB LLC that consists of 11 ways. They run Ubuntu
18.04 (Linux 5.4.0) with hyperthreading and Turbo Boost disabled. The kernel is con-
figured to isolate CPUs from the OS scheduler, use 1 GiB hugepages, disable power
saving states, and disable microarchitectural side channel mitigations.

On the load generator machine, we run the stateless Cisco T-Rex packet genera-
tor [160], which we modify to improve latency measurement accuracy from 10–100µs
to 1µs [192]. Unless specified otherwise, we use default application settings: 1024 de-
scriptor Rx and Tx rings and 2 DDIO LLC ways, and we run application logic on all
16 of the available CPU cores—8 cores per NIC. All the results presented are trimmed
means of ten runs; the minimum and maximum are discarded. The standard deviation
is always below 5%.

Measurement Tools We measure cycles per packet by modifying applications to record
cycle counters, cache hit rate using Linux perf, Tx ring occupancy by comparing com-
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Figure 5.4: Normalized performance of shRing to privRing for NFs with varying
memory intensity: shRing/8 improves performance in all cases. (Labels show percent-
age of NFs in quadrant.)

pletion ring producer and consumer indexes, PCIe latency using NVIDIA Mellanox
Neo-host [162], and memory bandwidth and PCIe hit rate using Intel PCM [161].

Ring Mechanisms We compare between privRing; non-dynamic array ring sharing
(RxArr) between 8 cores—the maximum possible on a CPU with 16 cores and 2 NICs—
which we denote “shRing/8;” and a small privRing configuration whose aggregate
descriptor count equals that of shRing/8, i.e., 128 entries per ring when shRing/8 uses
1024 entries per RxArr. We remark that small privRing is impractical since it imposes
loss when traffic is bursty, as shown in §4.2.2. We show it for a thorough comparison
between privRing and shRing.

5.2.2 Non-Pathological Conditions

We show the benefits of using shRing under high load without pathological core over-
load conditions. Specifically, we evaluate (1) synthetic NFs with varying memory inten-
sity and cache pressure; (2) synthetic NF CPU cycle breakdown; (3) l3fwd no-drop per-
formance; (4) NAT and LB performance; and (5) MICA key-value store performance.

For NFs, we use large 1500B UDP packets sent at 200 Gbps to stress the I/O working
set, and select packet 5-tuples at random to spread the load across cores.

Memory Intensity To explore shRing performance with NFs of various memory in-
tensity, we run FastClick’s synthetic WorkPackage module [116] which receives a packet,
performs routing, followed by a number of random memory reads from a buffer, and
then sends the packet out. We modify WorkPackage to optionally read or overwrite
packet payload.

We test 60 configurations: randomly reading 1, 2, 4, 8, or 12 times from a 1MiB,
10MiB, 20MiB, or 40MiB buffer (corresponding to L1, L2, LLC, and larger than LLC
sizes), while packet payload is either untouched, read, or overwritten.

For each configuration, we plot shRing throughput, latency, and cycles per packet
normalized to privRing; Figure 5.4 shows the results. We find that throughput and
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latency improve with descriptor sharing ratio: shRing/8 obtains the best throughput
and latency followed by shRing/4 and then shRing/2. Moreover, shRing/8 always
outperforms privRing (all are above the horizontal line), while shRing/4 and shRing/2
underperform privRing for 54% and 38% of the most memory intensive configurations,
respectively. Exploring the configurations where shRing/2 and shRing/4 are less suc-
cessful than privRing, we find that they consist of 3/16 and 11/16 NFs that read packet
payload, and 5/16 and 6/16 configurations that overwrite payload, for shRing/2 and
shRing/4, respectively.

Workload Cache Footprint We explore shRing effectiveness as the workload’s cache
footprint grows. We use the aforementioned synthetic NF with 1–16 random memory
accesses per packet in a 40 MiB array. Figure 5.5 shows the results. ShRing mitigates
I/O working set induced cache misses, improving application cache hit rates by up to
2.1x, which translates to up to 13% higher throughput and up to 13.1x lower latency.
As the workload’s cache footprint grows, so does CPU processing time per packet, so
eventually cores exceed the CPU cycle budget needed for line rate processing. Both
throughput and latency degrade as a result. As the number of processed packets thus
decreases, the I/O working set induced cache stress decreases too, and so the gap be-
tween cache misses per packet in privRing and shRing shrinks.

Cycle Breakdown We analyse the trade-off between synchronization and cache con-
tention by breaking down the CPU cycles of the sythetic NF described above with 2
random memory accesses per packet in a 40 MiB array runing on all cores.

Figure 5.7a distills our case. It shows the average number of cycles it takes to handle
one packet, breaking it down to synchronization overhead (“sync”) vs. actual process-
ing time (“orig”). While synchronization overheads are substantial and increase with
the level of sharing, we see that it is nevertheless advantageous to pay the cost, as
cycles-per-packet improves by about 4% each time we halve the I/O working set size.

The NF throughput, shown in Figure 5.7b, is approximately inversely proportional
to cycles-per-packet (Figure 5.7a) as long as the CPU constitutes a bottleneck resource
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Figure 5.7: ShRing’s synchronization costs are significant but are nevertheless worth-
while, as they are cheaper than the overheads associated with privRing’s larger I/O
working set. When shRing’s cycles-per-packet meet the line rate budget (a), its packet
processing rate exceeds the packet arrival rate, generating low occupancy in the ring (f)
and thus substantially reducing the latency (g).

and line rate is not yet attained. Specifically, let C denote the average number of cycles
required to process one packet, let hz (=2.1 GHz) denote the cycles-per-second clock
speed of the CPU, and let n (=16) denote the number of running CPU cores, then n× hz

C
is the number of packets that the CPU handles per second, and so Gbps(C) = 1500B ×
8bit × n × hz

C is the throughput.
Using this equation, we can compute Cbdgt, the budget of per-packet cycles that the

system must meet to achieve the 195.6 Gbps line rate (denoted “bdgt” in Figure 5.7a)
as follows: Cbdgt = 1500B × 8bit × n × hz / 195.6 Gbps = 2061 cycles per packet. Only
shRing/8 meets the budget here.

We have argued that the reason underlying shRing’s improved performance is its
smaller I/O working set, which curbs memory bandwidth consumption by increasing
cache efficiency. This argument is directly supported by Figures 5.7c (memory band-
width) and 5.7d (LLC misses as experienced by both CPU and NIC). In the latter figure,
we see that privRing’s NIC PCIe miss rate is as high as 85%, which is why privRing’s
average NIC PCIe read latency grows to 1.45 µs (Figure 5.7e). Such a long PCIe latency
is enough to saturate the DMA engines within the NIC (designed to hide PCIe latency
with parallelism), and so it hampers the NIC’s ability to quickly process rings, which
in turn generates high ring occupancy of 94% on average (Figure 5.7f). The implication
is that, on average, each privRing packet P must wait for 966 packets (=94% of ring
size) to be processed before P is finally processed itself, which explains privRing’s high
latency (Figure 5.7g).

In contrast, shRing/8’s occupancy is small, as it meets the Cbdgt budget and so its
processing rate (µ) is larger than the arrival rate (λ). Because µ > λ, latency is much
lower. Even when shRing does not meet the Cbdgt budget (the /2 and /4 variants), it
improves latency, as its per-packet processing time is lower than in privRing.

No-Drop We study shRing performance with the RFC2544 no-drop rate (NDR) test [138]
repeating the Layer-3 MTU packet forwarding (l3fwd) on 8 cores experiment of §4.2.2.
This test finds the maximum throughput attainable without loss. We run it once with
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traffic evenly spread across the cores (“multicore”) and again with traffic directed at
one of them (“single core”).

Figure 5.8a shows that small rings work well for multiple cores if traffic is evenly
spread between them, curbing the load and bursts that each core/ring experiences,
which allows the fewer Rx buffers to cope. But small rings cease to deliver when traffic
is uneven: the overloaded (“single”) core’s ring overflows and causes packet drops if it
is smaller than 1Ki. In contrast, Figure 5.8b shows that one shared 1Ki-ring is enough
to sustain optimal NDR of either 8 competing cores (each using 128 entries on average)
or just one overloaded core, as shRing allows more loaded cores to use more Rx entries
at the expense of their less loaded peers that are adequately served by fewer entries at
that particular time.

NAT and LB We use two stateful FastClick NFs as macrobenchmarks: NAT and LB,
which cache up to 10M flows using per-core cuckoo hash tables. NAT consistently
remaps and rewrites incoming and outgoing packet IP packet headers. LB matches
each flow with one of 32 destination servers, maintaining the match for each flow and
making new matches with a round-robin policy. NAT is more memory intensive than
LB, as it uses two cache entries per flow (one for each direction) while LB uses only one

We show results with a load of 200 Gbps. Results with speeds greater than 170 Gbps
are similar, while lower speeds show no difference in throughput and less than 5 µs in
latency in favor of privRing due to the synchronization overhead of shRing. The results
we show are for the default Rx ring size (i.e, 1024), results for other ring sizes are similar
in nature.

Figure 5.6 depicts the resulting (a) throughput, (b) latency, (c) ring occupancy, (d) PCIe
(DDIO) miss rate, and (e) memory bandwidth. The results show that shRing/8 outper-
forms privRing in throughput and latency, which is consistent with previously pre-
sented microbenchmarks. This happens because at high offered load the I/O work-
ing set starts contending with the CPU for LLC space and memory bandwidth, which
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slows CPU packet processing. CPU slowdown, in turn, causes ring occupancy to grow,
which increases latency (as explained in §4.2.1).

We expect small privRing to perform similarly to shRing/8, and indeed this is the
case for LB, but surprisingly small privRing NAT performance is worse than shRing.
For NAT, small privRing has a notably lower DDIO hit rate and higher ring occupancy.
We speculate that the root cause is that shRing reposts buffers slower as it waits for
other cores to make progress, and therefore its working set is slightly smaller because
less buffers are exposed to I/O.

ShRing achieves high performance because it shrinks the I/O working set size to
fit in the default DDIO portion of the LLC (i.e., two LLC cache ways). When disabling
DDIO, namely forbidding NIC DMA writes from allocating ways within the LLC, all
ring types achieve only 150 Gbps throughput and 1.3 µs latency, which is 3% and 27%
lower than privRing and shRing/8 with default DDIO (not shown in the figure). When
assigning all LLC ways to DDIO, privRing performance matches shRing for LB, but
it is insufficient for the more memory intensive NAT application, which uses twice as
much state and whose throughout improves by less than 5% (also not shown).

Key-Value Store We use the MICA key-value store [63] to show that shRing is ap-
plicable beyond NFs and to highlight how workload conditions impact shRing’s effec-
tiveness. We run MICA on 8 cores using a single 100GbE NIC, with 128 B keys and
1KiB values.

Figure 5.9a shows the results of a workload with 95% set operations, uniformly dis-
tributed among all cores, at the highest possible request rate. This workload satisfies
the conditions that make shRing beneficial (§5.1.1)—i.e., (1) no pathological core over-
load, (2) a large I/O working set, and (3) non-negligible penalty of I/O-related cache
misses. ShRing improves MICA throughput by 12% and reduces latency by 52% in this
workload; small privRing shows the potential throughput gain from reducing the I/O
working set, without shRing’s synchronization cost.

Figure 5.9b changes the workload’s traffic spread, making it imbalanced (Zipf dis-
tribution of skewness 0.99). Consequently, shRing reduces throughput by 1% over
privRing but still improves latency by 50%. Figure 5.9c shows the initial workload but
with 128B values, which makes the I/O working set small. ShRing makes no through-
put improvement and increases latency by 11%. We obtain similar results when lower-
ing the request rate of Figure 5.9a’s workload (not shown). In both these cases, shRing
adds synchronization overhead which is not offset by I/O working set related improve-
ments, either because the I/O working set was small to begin with (Figure 5.9c) or
because the penalty of I/O-related cache misses is negligible (low load).

5.2.3 Pathological Conditions

This section demonstrates shRing’s sensitivity to pathological core overload, where one
of the shared ring’s cores is continuously overloaded compared to the rest. We eval-
uate shRing/8, referred to as “shRing” here, as well as dynamic shRing/8 (denoted
“dshRing”) and its ability to gracefully fall back to privRing in pathological condi-
tions. We evaluate two causes for pathological conditions: variability in processing
and variability in incoming packet distribution among cores. We also evaluate NAT
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and LB throughput when offered load switches from non-pathological to pathological
over time.

Processing Variability In this experiment, we choose a target core per NIC and con-
trol its processing speed by varying the number of memory accesses it performs per
packet while all other cores run the synthetic workload described in §4.2.1.

Figure 5.10a depicts the resulting throughput. When the target core’s packet pro-
cessing is fast, shRing and dshRing throughput is 12% higher than privRing, but as the
core’s processing slows down, shRing throughput declines to 58% lower than privRing.
In contrast, dshRing notices that one core is slowing down shRing and switches to
privRing, thereby avoiding performance degradation.

Figure 5.10b explains the observed throughput, by showing the time shRing Rx de-
scriptors wait for co-sharing core bitmap updates before being handed back to the NIC.
We present only shRing and dshRing, because privRing does not have such delays. In
shRing, slow processing on the target core can delay co-sharing cores from making their
processed Rx descriptors available for NIC reuse. This effect is negligible when the tar-
get core makes less than 100 memory accesses per packet, but subsequently, descriptor
wait time increases dramatically (up to 257 µs) and throughput decreases.

Traffic Variability Here, we choose a target core per NIC and vary the percentage
of packets directed to it up to 30%. All cores run the synthetic workload. We direct
64 B packets at the target core and 1500 B packets at the others, so that even when re-
ceiving 30% of the packets, the target core’s incoming traffic is < 3% of total incoming
throughput. This means that in principle, the target core’s behavior should have negli-
gible effect on overall throughput.

Figure 5.11a shows the throughput in practice. When the packet load on the target
core is less than 15%, shRing outperforms privRing and dshRing’s heuristic correctly
enables shRing. But as load exceeds 15%, the targeted core becomes overloaded and so
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shRing throughput declines by up to 54%. In contrast, privRing throughput declines
by only 3%, since other cores are not affected. DshRing’s heuristic identifies when the
achieved throughput is too low and that it will not be improved by shRing, and thus
switches to privRing.

Figure 5.11b shows that as with processing variability, shRing’s throughput de-
creases because the unloaded cores’ Rx descriptor reposting is delayed by the over-
loaded core.

Figure 5.11c presents the ratio of packets successfully processed by the target core
out of all packets. While shRing maintains the target core’s ratio of outgoing to incom-
ing packets, the cost is that as more packets target this core, shRing delays receiving
on other cores. This results in drops of the 1500 B packets when the target core is over-
loaded, and thus throughput declines. In contrast, privRing drops excess packets that
exceed the target core’s processing capacity, and as a result it has at most 17% outgoing
packets on the target core.

Handling Variability with Dynamic ShRing We run an experiment where the in-
coming load switches from non-pathological to pathological after 20 seconds. Fig-
ure 5.12 shows NAT and LB throughput sampled every second. DshRing initially
uses privRing, but as load increases, it identifies high throughput and memory band-
width with no overloaded cores and switches to shRing. At 20 seconds, we reconfigure
the load generator to send a pathological load, which overloads cores and decreases
throughput. DshRing identifies the drop in throughput and switches back to privRing.
Consequently, dshRing achieves good performance in both.

5.3 Kernel-Based TCP Sockets

Our implementation and evaluation focus on NFV workloads, which typically bypass
the operating system (OS) networking stack and the socket abstraction. This section
explores the potential benefit to socket-based TCP applications from deploying shRing
in the Linux networking stack.
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Concerns about the effectiveness of a shRing-based NIC OS driver are that (1) appli-
cation working sets may be too large for shRing’s improved DDIO utilization to matter
and (2) even if not, small private rings might not lead to packet loss in the Linux kernel,
as opposed to with DPDK.

Because our shRing prototype is DPDK-based, we cannot directly evaluate shRing
in the Linux kernel. We therefore use “small privRing” as a proxy, to show the ben-
efit of reducing the I/O working set in the Linux kernel. We run Netperf [40] mi-
crobenchmarks to show that: (1) smaller I/O working sets can improve performance of
a socket-based application and (2) 1Ki-sized rings are necessary to handle burstiness in
the kernel.

Pros of Smaller I/O Working Sets We measure Netperf TCP request-response through-
put (sum of Rx and Tx). We use 16 cores and two NICs with two threads per core (one
per NIC). For symmetry, we use the same ring size on both sides. In all experiments,
the CPU is not the bottleneck.

Figure 5.13a shows the throughput obtained for 64KiB requests and various re-
sponse sizes. In this setting, small rings outperform large rings by up to 10%. But when
the size of the request and the response are equal (Figure 5.13b), the results become less
conclusive, e.g., for 1KiB messages throughput is almost the same for both ring sizes,
and for 4KiB messages, the small ring’s throughput is 5% less than the default.

Cons of Small Private Rings We measure Netperf TCP stream throughput for var-
ious private ring sizes, with traffic either directed at a single core or evenly spread
among 8 cores. Figure 5.14 (similarly to Figure 5.8) demonstrates that small rings work
well for multicore TCP traffic, as the spread of load curbs the bursts each individual
core/ring experiences. However, a single ring smaller than 1Ki overflows and causes
drops, which cause TCP to back off and thus degrade throughput.

5.4 Related Work

Efficient LLC Utilization DDIO enabled platforms allow NICs to access data faster
via the relatively small LLC. Many previous works, unrelated to ring sharing, pro-
posed techniques to improve DDIO efficiency: (1) using small private rings to reduce



87

the I/O working set [97]; (2) placing packets in LLC slices closest to the target process-
ing CPU core [98]; (3) eliminating interference between applications and I/O devices
when partitioning the LLC [169]; (4) placing only packet headers in the LLC to reduce
LLC contention [197, 271, 282]; and (5) modifying CPUs to prefetch DDIO-written data
into mid-level caches and to invalidate data without writeback when possible to con-
serve memory bandwidth [283]. We show that small private rings are insufficient and
propose a ring sharing mechanism that is symbiotic with the last four techniques.

Sharing Within a Core in Software Linux io_uring ”automatic buffer selection“ [284]
lets applications pre-register buffers and later consume these via read/recv system
calls for different file descriptors. Similarly, buffers posted to shRing are pre-registered
and later assigned to cores at packet arrival time. But unlike io_uring, shRing operates
between software and hardware.

Sharing Within a Core in Ethernet NICs When a single core and privilege level have
multiple NIC rings, sharing their buffers and CRs to conserve resources is desirable.
For example, SRIOV NICs expose a ring per VM on the hypervisor to receive packets
missing hardware virtual switching rules, allowing the hypervisor to install matching
rules [113, 114]. As the number of VMs exceeds the number of cores, multiple such
rings must share a core. To optimize this, NVIDIA NICs recently started sharing ring
buffers and CRs within each core [277] via the same firmware changes that we used,
which are now publicly available. ShRing, in contrast, shares rings between cores.

Sharing Between Cores in RDMA RDMA applications typically employ queue pairs
(QPs) with dedicated buffers to connect between endpoints—consuming GiBs of DRAM [285,
286]. Shared Receive Queues (SRQ), like shRing, decrease memory use by sharing
buffers. Whereas SRQ helps RDMA applicability by fitting I/O buffers in server DRAM,
shRing improves performance by fitting I/O buffers in server LLC.

Sharing Between Cores in Integrated NICs Nebula [287] is an on-chip integrated
NIC design optimized for RPC workloads. Nebula, like shRing, fits the I/O work-
ing set within the LLC. Whereas Nebula is applicable only for RDMA-like hardware-
terminated protocols, shRing is applicable to typical general purpose Ethernet software
network stacks.



Chapter 6

Disentangling the Dual Role of
NIC Receive Rings

CPUs parallelize packet processing by assigning each core with its own receive ("Rx")
ring. The default size of each Rx ring is >=1Ki entries, to absorb packet bursts. Conse-
quently, the associated I/O working set—all packet buffers pointed to by all Rx rings—
can easily exceed the LLC capacity, resulting in decreased performance due to high
memory bandwidth. We contend that the I/O working set size is needlessly large
because Rx rings have two orthogonal "producer-consumer" functionalities that are
unnecessarily entangled: (1) memory allocation, whereby the core "produces" empty
buffers that the NIC "consumes" for storing packets; and (2) packet delivery, whereby
the NIC "produces" incoming packets that the core "consumes" (receives). We pro-
pose rxBisect, a new way for the CPU and NIC to interface, which disentangles these
functionalities. RxBisect substitutes each individual Rx ring with two rings that corre-
spond to the two functionalities, such that memory allocation is done independently
of packet reception. RxBisect’s I/O working set can thus be smaller, as empty buffers
are no longer tied to their origin cores, so fewer of them are needed. We implement
RxBisect using software emulation. RxBisect improves throughput by up to 20% and
reduces latency by up to 11x. The significant latency gains occur when rxBisect meets
line rate load whereas the baseline fails to do so.

6.1 RxBisect

RxBisect is a new NIC-CPU interface designed to address the I/O working set prob-
lem. RxBisect disentangles the traditional Rx ring’s empty buffer allocation and packet
reception functionalities, allowing them to be managed independently. RxBisect sup-
ports two types of rings: allocation (Ax) rings, where a core produces empty buffers for
the NIC, and bisected reception (Bx) rings, where the NIC produces incoming packets,
stored in buffers it consumes from allocation rings.

The crux of rxBisect is that each bisected reception ring r can be associated with
several allocation rings (of different cores), enabling the NIC to deliver packets to r as
long as some allocation ring is not empty. This association is not exclusive—multiple
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Bx rings can be associated with overlapping (or identical) sets of Ax rings. In this
way, rxBisect turns the union of the set of empty buffers produced by each core into
a globally shared resource, co-managed by the NIC and software in a lockless manner.
This design allows each core to maintain a large bisected reception ring (for absorbing
bursts) without having to independently maintain a large set of empty buffers—it only
requires a small allocation ring. Thus, rxBisect ensures that the I/O working set size is
kept below LLC capacity.

In the following, we detail rxBisect’s receive-side processing in the NIC (§6.1.1) and
by software (§6.1.2). RxBisect does not modify the Tx side and so we do not discuss it.
We then pinpoint how rxBisect addresses the shortcomings of the privRing and shRing
designs (§6.1.3). Finally, we discuss NIC hardware implementation issues (§6.1.4).

6.1.1 NIC Side

An rxBisect NIC supports two types of receive-side rings: allocation (Ax) and bisected
reception (Bx) rings. Each Ax ring entry points to an empty buffer for the NIC to con-
sume in order to store an arriving packet. Each Bx ring entry holds a descriptor through
which the NIC notifies software of packet delivery and/or consumption of an empty
buffer. Each Bx ring entry holds a pointer to a received packet and the index of the Ax
entry and Ax ring that produced the packet’s buffer. Bx entries also hold a “done” flag
and a corresponding sense-reverse indication flag, whose purpose is the same as in the
CRs of the existing NIC interface described in §4.1.

Figure 6.1 depicts rxBisect’s flow. Initially (Figure 6.1a), software allocates mem-
ory for allocation and bisected reception rings. Allocation rings are filled with entries
pointing to MTU-sized buffers to receive packets and bisected reception ring entries are
left empty, as the NIC will overwrite them. Crucially, the number of allocated buffers
in each Ax ring can be smaller than the size of the Bx rings, which is the key to reducing
the I/O working set size (§6.1.3).

Software then associates each Bx ring r with several Ax rings, indicating to the NIC
that buffers from these allocation rings can be used to store packets destined to r. Soft-
ware also links each Ax ring a with some Bx ring r, indicating to the NIC that notifi-
cations about buffers consumed from a should be delivered through r. For simplicity,
assume for now that software (1) allocates per-core Ax and Bx rings, (2) links a core’s
Ax ring to its Bx ring, and (3) associates every Bx ring in a NUMA domain with all the
Ax rings residing in that domain. (We discuss another software usage model in §6.1.2.)

When packets arrive (Figure 6.1b), an rxBisect NIC maps each incoming packet to a
reception ring exactly as a packet is mapped to an Rx ring in today’s NICs, e.g., using
RSS. For each packet, the NIC chooses an allocation ring with available buffers accord-
ing to some policy (e.g., the linked Ax ring or a random non-empty Ax ring if it is
empty), and consumes a buffer from that Ax ring to store the packet. In the depicted
scenario, a burst of five packets arrives for core 0. The first four packets exhaust its Ax
ring, and thus the fifth packet is placed in a buffer allocated from core 1’s Ax ring. To
deliver each packet, the NIC first DMA-reads a packet buffer address and size from the
Ax head descriptor entry, and then DMA-writes the packet’s data to the packet buffer.
The NIC uses internal synchronization to prevent race conditions, wherein parallel pro-



90

-
-

--
-
- -

-
--

-

- -

-

--

-

-

tail

a. Ax rings populated with empty buffers. Bx rings are empty.

core 0

NIC

Bx0

Ax

pointer
index

gen.

1 0

3

-
-
-

--
-
-
-

-
-

-
--

-

-
-

-

-

-

--

-

-

-
1 2

3

Ax0

b. While populating Bx0, Ax0 bufs run out, so NIC uses Ax1.

core 1

Bx1 Ax1

1

b0

b1

b2

b3

0

2

1 0

32

b4

b5

b6

b7

--

-

2
3

0
--

-

0
1

0
0
1

--
-
0
0

core 0

NIC

Bx0

1 0

3

-
-
-

--
-
1
-

-
-

-
--

-

0
-

-

-

-

--

-

-

-
1 2

3

Ax0

core 1

Bx1 Ax1

1

b0

b1

b2

b3

0

2

1 0

32

b4

b5

b6

b7

1

c. Each core re-arms its Ax and processes its packets, if any.

0
0
1

--
-
0
0

2
3

0
--

-

0
1

--

-
core 0

NIC

Bx0

1 0

3

-
-
-

--
-
1
-

-
-

-
--

-

0
-

-

-

-

--

-

-

-
1 2

3

Ax0

core 1

Bx1 Ax1

1

0

2

1 0

32

b12

b5

b6

b7

b8

b9

b10

b11

1

b0
b1
b2
b3
b4

head

Figure 6.1: RxBisect packet reception using two allocation (Ax) and two bisected re-
ception (Bx) rings. Ax ring buffers are shared by both Bx rings through NIC hardware.
Highlighted text indicates changes relative to the previous stage. The Ax head ad-
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cessing units consume the same packet buffer when delivering different packets; we
expand on this aspect in §6.1.4.

The NIC notifies the receiving core about a delivered packet by DMA-writing the
packet buffer’s address to the target Bx ring’s head descriptor entry. The NIC notifies
the allocating core about the consumed buffer by DMA-writing the buffer’s Ax ring and
entry to the head descriptor of the Bx ring linked to it. In the common case, in which the
receiving core is also the allocating core, these notifications are combined into a single
descriptor, as shown in Figure 6.1b for buffers b0, . . . , b3. Finally, the NIC updates the
Ax and Bx ring head indexes, optionally raising an interrupt for both. Importantly, the
critical path to deliver a packet in terms of DMAs is equivalent in privRing, shRing,
and rxBisect (§6.1.4).

Finally (Figure 6.1c), each core processes notifications in its Bx ring (either by polling
or due to receiving the aforementioned interrupt). It processes delivered packets and/or
replenishes buffers consumed from its Ax ring with empty buffers that it allocates, in-
cluding notifying the NIC (by means of updating the Ax ring’s tail) that new buffers
are available. After processing a packet, its buffer is freed back to the system allocator.
We expand on software-side processing in §6.1.2.

6.1.2 Software Side

Our discussion relates to software that directly interacts with the NIC, i.e., kernel-
bypass applications or in-kernel drivers. Software has flexibility in how it leverages
rxBisect to minimize the I/O working set by configuring Ax rings such that the aggre-
gated size of their buffers does not exceed LLC capacity. For example, software can use
small (e.g., 128-entry) per-core Ax rings. Or, software can employ a small number of
large Ax rings, which are served by a few dedicated allocation cores while the remain-
ing cores focus on packet reception. The discussion below does not assume a specific
configuration. In any case, the buffer-free bisected receive rings should remain large,
to absorb bursts.

Allocation Mechanism The only constraint rxBisect makes on the software architec-
ture is that it support allocation and freeing of a buffer by different threads/cores. This
scenario can occur when a buffer allocated from one core’s Ax ring is used to hold a
packet destined to a different core, which will then have to free this buffer after process-
ing the packet. Fortunately, many modern multi-core allocators support this allocator
capability [288]. In particular, both the Linux kernel and DPDK already use such allo-
cators [289, 290]. At a high level, these allocators employ a two-level design consisting
of a shared buffer pool with a per-core caching level, which reduces contention on the
shared pool. Caches are filled from the shared pool when they run out of buffers and
caches drain excess buffers to the shared pool when they grow beyond some threshold
of the cache’s expected size (e.g., 1.5× in DPDK). The two-level allocator design is im-
portant for amortizing the cost of buffer transfer between cores. Due to it, we observe
a difference of at most 15 cycle in average allocator call latency between rxBisect and
privRing (where buffers never move across cores).
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1 i n t RxBisect ( Ring * ax , Ring * bx ,
2 void * * pkts , i n t len ) {
3 u i n t 3 2 _ t idx , npkts = 0 , n a l l o c = 0 ;
4 BXEntry * bxe ;
5 while ( npkts < len && bxe = consumeBXE ( bx ) ) {
6 i f ( bxe−>buf != NULL)
7 pkts [ npkts ++] = bxe−>buf ;
8 i f ( bxe−>idx == ax−>idx ) {
9 ax−>desc [ bxe−>idx ] . buf = a l l o c _ b u f ( ) ;

10 n a l l o c ++;
11 }
12 }
13 i f ( n a l l o c > 0) {
14 ax−> t a i l += n a l l o c ;
15 * ax−>doorbe l l = ax−> t a i l ;
16 }
17 return npkts ;
18 }

Listing 6.1: RxBisect disentangled ring receive code.

Receive Flow Listing 6.1 shows the rxBisect receive function, which dequeues a batch
of packets for processing as well as handles notifications about allocated buffers that
require replenishing. The function receives an allocation ring (ax), a bisected reception
ring (bx), and an output array of packet pointers (pkts) of length len. It returns the
number of received packets. Multiple cores run this code in parallel with different ring
arguments, which are all interlinked by NIC hardware to share Rx buffers.

Lines 5–12 check the Bx ring for new entries. The Bx ring check in consumeBXE(bx)
uses the sense reverse technique (§4.1) to identify ready entries without writing to Bx
descriptors. When no Bx entry is ready, this function returns NULL; otherwise, it returns
the first ready entry and updates the Bx ring’s tail. (We omit consumeBXE’s code.)

Each returned Bx entry indicates both the pointer of a received buffer, if there is
one, and an Ax ring and entry index of a buffer consumed by the NIC. If the Bx entry
contains a packet buffer, the packet is stored for processing (lines 6–7). If the Bx entry
describes a buffer originating from the core’s Ax ring, then a new Ax buffer is allocated
in its stead (lines 8–10). Lines 13–16 check if allocation requests were handled and
advance the Ax ring’s tail index if necessary. It is correct to advance the tail because
the NIC consumes buffers in ring order and enqueues all the related notifications to
this Bx ring in the same order. The code does not limit the number of allocations, to
replenish as many buffers as possible. Nevertheless, the number of allocation iterations
is bounded by the Ax ring size, because once it becomes empty, only this function can
replenish it.

6.1.3 Comparison to PrivRing and ShRing

By disentangling buffer allocation from reception, rxBisect obtains three advantages: (1) the
total number of allocated buffers in Ax rings can be smaller than the total size of the
Bx rings, which reduces the I/O working set size; (2) the NIC can use buffers from
any Ax ring to populate any Bx ring, so buffer sharing is achieved similarly to shRing;
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but (3) in contrast to shRing, sharing buffers is achieved without sharing the cores’
packet reception capacity or software synchronization.

Figure 6.2 depicts these differences. The figure compares the minimal I/O working
set of two cores running privRing, shRing, and rxBisect. In privRing (Figure 6.2a),
each core can work independently, without synchronization or other dependencies on
other cores’ behavior. However, the existing NIC ring interface necessitates that an Rx
ring able to absorb packet bursts must also hold many empty buffers, resulting in an
excessive I/O working set.

ShRing (Figure 6.2b) solves privRing’s I/O working set problem by sharing a default-
sized Rx ring, which can absorb packet bursts, between the cores, but it requires syn-
chronization (with locks) to serialize reposting of buffers to the shared ring and advanc-
ing the ring’s tail. Crucially, shRing always incurs this latency-increasing per-packet
overhead, even if the workload does not suffer from the I/O working set problem (e.g.,
because the packet rate allows a packet’s processing to complete before its eviction
from the LLC).

In addition, with shRing, traffic destined to an overloaded core can monopolize
the shared ring, preventing other cores from receiving packets. E.g., in Figure 6.2c,
because the overloaded core 2 cannot sustain its packet rate, packets destined to it start
queueing, eventually filling the ring. Thus, packets to core 1 get dropped, despite it
being able to process them.

RxBisect (Figure 6.2d) combines the advantages of privRing and shRing without
inheriting their disadvantages. Disentangling the existing Rx ring functionality into
bisected reception and allocation rings with independent sizes allows rxBisect to real-
ize a shared buffer pool, based on small per-core allocation rings—but with cores still
working independently, without software synchronization or inter-core dependence.
Synchronization is only required when moving freed buffers between cores, but as ex-
plained in §6.1.2, this synchronization is infrequent and its cost is low.

Handling of Pathological Overload Like shRing, RxBisect reduces the minimal I/O
working set by relying on a shared buffer pool, which avoids the over-provisioning of
Rx buffers that occurs in privRing. It is therefore natural to ask how rxBisect responds
to pathological overload conditions that, in shRing, cause the ring to be monopolized
by one or more overloaded cores. As discussed next, thanks to rxBisect’s disentan-
glement of packet reception from buffer allocation, overloaded cores can only “hog”
packet buffers, leading to more buffers being allocated, but they cannot interfere with
packet reception by other cores.

In rxBisect, per-core Ax rings guarantee the availability of vacant receive buffers for
the NIC to consume as long as there is at least one underloaded core with an Ax ring
and the buffer allocator can satisfy allocation requests. For allocators preconfigured
with a fixed number of buffers, their buffer pool must be large enough to keep satisfy-
ing allocation requests even when Bx rings of overloaded cores are full. Consider, for
example, the scenario in Figure 6.2d, in which core 2’s Ax ring has been exhausted and
its Bx ring is nearly full. Suppose that core 2’s Bx ring becomes full (which necessarily
requires allocation of buffers from core 1’s Ax ring) and core 2 slows to a standstill. Core
1’s Bx ring indicates that its Ax ring buffers should be repopulated, and because core



94

occupied vacanttail

a. privRing (each core has its own private ring)

Rx2

minimal IO working set

Rx1

b. shRing (shrinks IO working 
set size through ring sharing)

shRx

core 1 core 2

core 1 core 2

c. shRing (ineffective against
pathological load imbalance)

shRx

core 1
core 2

d. rxBisect (disentangles allocation from packet reception 
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Figure 6.2: Summary of the minimal I/O working set with privRing, shRing, and
rxBisect. Completion rings are removed for clarity. RxBisect and shRing reduce the
I/O working set size compared to privRing. RxBisect, unlike shRing, shares buffers
without locking.
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1 is not overloaded, it will process these notifications and replenish the in-use buffers.
Once these Ax buffers are replenished, core 1’s Bx rings can continue to receive packets,
using buffers allocated from its Ax ring. Meanwhile, the lack of empty Bx entries on
core 2 will cause new packets for this core to be dropped by the NIC. The important
property here is that cores with available cycles can receive packets, which is not true of
shRing (Figure 6.2c). However, the I/O working set might grow due to the additional
buffer allocations, beyond the “minimal I/O working set” depicted in the figure.

6.1.4 Hardware Design Considerations

RxBisect provides a new NIC-CPU interface, so its full implementation requires NIC
ASIC modifications that are beyond our scope. Instead, we discuss the necessary
changes and show that they are compatible with existing NIC mechanisms.

Packet Delivery Mechanically, rxBisect’s packet delivery algorithm is analogous to
that of existing NICs, which already access two rings (Rx and CR) on packet deliv-
ery (§4.1). Consequently, the critical path of DMAs performed for packet delivery in
rxBisect is identical to that of the current NICs used by privRing and shRing. In both
hardware designs, the NIC DMA-reads (and can prefetch) buffers populated by soft-
ware in ring structures (an Rx ring in current NICs and an Ax ring in rxBisect). RxBisect
NICs can read from multiple Ax rings in parallel, to avoid increasing the critical path.
Subsequently, both types of NICs DMA-write packet data followed by DMA-writing a
notification in a descriptor of a target ring (a CR in current hardware and a Bx ring in
rxBisect). When rxBisect needs to notify different Bx rings about packet delivery and
buffer consumption, it performs these DMA-writes in parallel, without increasing the
critical path length.

While such parallel writes might increase PCIe bandwidth consumption, this is-
sue can be mitigated by batching notifications. The NIC will delay writing a Bx entry
that describes only a buffer consumption until a packet for that Bx ring arrives (or a
timeout). Because the waiting Bx entry and the new Bx entry (for packet arrival) are
adjacent, they can typically be written with the same PCIe transaction. Similar “com-
pletion compression” mechanisms already exist in NVIDIA NICs [291], indicating that
this technique is practical.

Ax Ring Access Synchronization High speed NICs process packets destined to dif-
ferent reception rings (Rx rings today and Bx rings in rxBisect) in parallel, via multiple
processing units (PUs) [292]. When PUs read buffers from Ax rings, the NIC prefetches
them in batches to hide PCIe latency. As a result, an rxBisect NIC needs some form
of synchronized PU access to Ax rings, to prevent a race condition in which two PUs
consume the same empty buffer when delivering packets to different Bx rings. A pos-
sible concern about rxBisect is that internal NIC synchronization will impose similar
overheads on the hardware to those imposed on software by shRing’s shared ring syn-
chronization, and therefore degrade the NIC’s throughput.

Fortunately, this is not the case, as internal NIC synchronization is more efficient
than CPU multi-core synchronization. Indeed, existing NICs are already capable of per-
forming this type of ring synchronization while delivering traffic at line rate. ShRing,
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which uses off-the-shelf NICs, associates multiple per-core CRs with the same Rx ring.
Thus, with shRing, NIC PUs delivering packets to different CRs associated with the
same Rx ring must already prefetch and consume buffers from a single (Rx) ring, which
involves internal synchronization. This NIC synchronization is for consuming buffers
and is necessary independently of shRing’s software synchronization, which synchro-
nizes buffer production. Yet despite internal synchronization, the NIC remains able to
deliver traffic at 100 Gbps under shRing [268]. It follows that an rxBisect NIC can reuse
existing NIC synchronization mechanisms without degrading NIC throughput, as the
NIC synchronization required in shRing and rxBisect are analogous (Bx/Ax rings act
similarly to completion/Rx rings, respectively).

6.2 Prototype Implementation

Because an rxBisect implementation requires changing the NIC ASIC, we evaluate a
prototype based on software emulation. We implement a “software NIC” framework
in DPDK which runs unmodified DPDK applications.

The emulator dedicates a single core that emulates the NIC by consuming packets
from the real NIC and producing them to packet-processing “worker” cores. The em-
ulator core resides on a separate NUMA node from the one housing the worker cores,
buffers, and the hardware NIC. Because the emulator core only reads and writes ring
entries and never touches packet data, processing cores experience DDIO effects as
with a real NIC, including I/O working set effects.

The emulator core executes an infinite loop that (1) reads a batch of packet pointers
from a hardware Rx ring; (2) dispatches the received packets to the appropriate worker
Bx rings according to their RSS hash, without touching their data; and (3) replenishes
the hardware ring with buffers it consumes from worker Ax rings. Both hardware Rx
ring and worker Bx rings are sized to the sum of all Ax ring sizes.

When the emulated NIC consumes a buffer from an Ax ring, it is not used to store
a packet (as a hypothetical rxBisect NIC would), but instead replenishes a buffer in
the hardware Rx ring. The buffer will house a packet only after the hardware NIC
fills every buffer after it in the hardware ring. The I/O working set is thus larger with
emulation compared to a real rxBisect NIC, as the hardware ring’s buffers are added to
it.

6.2.1 Emulation Fidelity

Performance under emulation should underestimate the performance achievable with
a real NIC. To substantiate this claim (without building an rxBisect ASIC), we extend
the emulator to support privRing and evaluate the fidelity of its emulation.

PrivRing emulation employs one hardware Rx ring per worker, but still with a sin-
gle core to poll the hardware rings. When dispatching a packet, the emulator replaces
the hardware Rx buffer with a buffer from the receiving worker’s (emulated) Rx ring.

We compare native and emulated throughput and latency obtained by network ad-
dress translation (NAT) and LB NFs with different privRing configurations: default
(1 Ki-entry) rings and small 128-entry rings (see §6.3 for the evaluation setup). We
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Figure 6.3: PrivRing and small privRing compared to their emulation. Labels show
native to emulated ratio.

perform this comparison while varying the allocator’s buffer pool size, which is the
maximal I/O working set (i.e., maximal number of allocatable buffers). We report the
maximal I/O working set as a function of |Rx|, which is the minimal I/O working set’s
size in buffers (i.e., aggregated number of entries in worker Rx rings). Because DPDK’s
allocator requires this bound to be a power of two, we evaluate with 2|Rx|, 4|Rx|, and
8|Rx| buffers. (We cannot use |Rx|, as then all buffers would reside in the initial rings,
making replenishing a buffer impossible.)

Figure 6.3 shows that native execution indeed outperforms emulation. The differ-
ence is up to 10% when the maximal I/O working set is 2|Rx|, but as the maximal
I/O working set grows, emulation performance declines more sharply than native per-
formance (whose decline can be hard to see). We observe, however, that with a 2|Rx|-
buffer pool, native privRing sometime fails due to running out of buffers. This happens
because the NF does not release a buffer until it is transmitted, and as privRing con-
sumes packets quickly, the buffer pool can get exhausted before packet transmissions
complete. Emulated privRing avoids this problem, because its packet consumption
rate is lower. We manually remove said failed runs from the data shown in Figure 6.3,
and avoid using a 2|Rx|-buffer pool for native execution in our evaluation (see §6.3).

6.3 Evaluation

We evaluate rxBisect using network function benchmarks and the MICA key-value
store [63], under ordinary workloads (§6.3.1) and pathological overload conditions (§6.3.2).

System Setup We use two Dell PowerEdge R640 servers. One server is the system
under test and the other is the load generator. The load generator runs the stateless
Cisco T-Rex packet generator [160], modified to improve latency measurement accu-
racy [192]. Each server has dual 2.1 GHz Xeon Silver 4216 CPUs, each with 16 cores
and an 11-way 22 MiB LLC, and 128 GiB (=4× 16 GiB) 2933 MHz DDR4 memory. The
servers are connected back-to-back via two pairs of 100 Gbps NVIDIA ConnectX-5 Eth-
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ernet NICs [29], and configured following NVIDIA’s DPDK best performance guide-
lines [293].

All experiments use the default system and application settings. We report trimmed
means of ten runs, i.e., with the minimum and maximum discarded. Standard devia-
tion is always below 5%. Throughput results reflect the traffic rate sent back to the load
generator after processing, i.e., they discount packets dropped by the server.

Applications For NFs, we use network address translation (NAT) and load balancing
(LB), implemented using FastClick [116]. NAT remaps network addresses and rewrites
packet IP headers accordingly. LB assigns flows to one of 32 servers and rewrites packet
IP headers accordingly. Both use a 10 M-entry hash table to maintain their state. As a
macrobenchmarks, we use the MICA key-value store [63].

Applications run on one CPU of the test server (because for rxBisect, the emulator
must run on the other CPU). Unless noted otherwise, we dedicate 8 cores to each NIC.

Evaluated Architectures We compare four packet reception architectures: (1) “rxBi-
sect,” with per-core 128-entry Ax rings and 1 Ki-entry Bx rings (emulated); (2) “shRing,”
with two shared default-sized (1 Ki-entry) Rx rings, one per each NIC shared by 8 cores,
implemented with the RxArr variant [268]; (3) “privRing,” which uses per-core 1 Ki-
entry Rx rings; and (4) “small privRing,” which decreases the per-core ring size by
8× to 128 to obtain the same minimal I/O working set size as rxBisect and shRing.
However, small privRing is not a practical approach, as its rings cannot absorb packets
bursts. We include it as a yardstick.

Comparison Methodology We compare native execution of privRing and shRing to
our emulated rxBisect, which underestimates the performance rxBisect would yield
if implemented in hardware. Bars showing emulation results contain a diagonal line
weave pattern. We size DPDK’s buffer pool at 2|Rx| in emulated executions and 4|Rx|
in native executions, where |Rx| is the minimal I/O working set (in buffers). Based
on the results of §6.2.1, we expect a 2|Rx|-sized pool for emulation to yield results
comparable to those of real hardware, whereas a 4|Rx|-sized pool for native execution
yields similar performance to a 2|Rx|-sized pool, without suffering from buffer pool
exhaustion.

6.3.1 Ordinary Workloads

No-Drop Throughput Figure 6.4 shows the DPDK l3fwd no-drop throughput with
1500 B packets (§4.2.2) of an individual core (“single core”) and of all cores combined
(“multicore”). Buffer sharing in rxBisect and shRing enables them to match privRing’s
no-drop throughput both with multiple cores, each of which handles 1/8 of the traffic,
and with a single core, which absorbs bursts by fully utilizing all available buffers.

NAT and LB We run NAT and LB on all 16 cores and load them with 200 Gbps us-
ing 1500 B packets. Figure 6.5 shows (a) throughput, (b) latency, (c) ring occupancy,
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Figure 6.5: LB and NAT performance.

(d) DDIO hit rate, and (e) memory bandwidth. The latter two are measured using Intel
PCM [161].

At this load, architectures with a small I/O working set achieve line rate throughput
and comparable average latency (100 µs–119 µs). This is due to their effective use of
DDIO’s default configuration (Figure 6.5e), with 2 LLC ways assigned to it.

Due to its large I/O working set, privRing throughput collapses by up to 20% com-
pared to small privRing. As a result of failing to sustain line rate, privRing’s Rx rings fill
up, causing latency to increase by 11× due to the additional queueing time. PrivRing
can achieve line rate in LB if DDIO’s LLC portion is increased to 8 LLC ways, but fails
to achieve line rate for NAT even if all the LLC is assigned to DDIO. (Of course, expos-
ing more LLC ways to DDIO is a double-edged sword, as I/O and application memory
accesses compete [169].)

Key-Value Store We use the MICA key-value store [63] to evaluate the effect of rxBi-
sect beyond NFs. We run MICA on 8 cores (using a single NIC) with 128 B keys and
1024 B values. MICA maps incoming requests to processing cores by hashing the target
key. We use workloads with 95% PUT requests at the highest possible rate.

Figure 6.6 shows throughput and latency obtained when the key distribution is (a) uni-
form or (b) skewed (Zipf with parameter 0.99). The throughput of rxBisect (emulated)
is higher than privRing and shRing, by up to 19%. RxBisect underperforms (by up to
12%) only the yardstick small privRing, which is not a practical architecture. In terms
of latency, rxBisect is better than privRing but worse than shRing by up to 12%. Given
that emulation increases the time spent processing each packet and thus latency, we
believe that these results are encouraging.
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Figure 6.7: Processing variability caused
by increased memory accesses has no ef-
fect on rxBisect throughput despite ring
sharing. In contrast, shRing’s approach to
ring sharing degrades throughput.

6.3.2 Pathological Overload Conditions

This section shows that rxBisect remains effective under conditions which render shRing
ineffective. ShRing is ineffective at low traffic rates, because then the benefit of reduc-
ing the I/O working set does not outweigh its synchronization overhead, and under
pathological core overload conditions of continuous highly skewed per-packet process-
ing time variability or incoming traffic imbalance.

To address its limitations, ShRing proposed a “dynamic shRing” variant, which
switches between shRing and privRing during run time, according to heuristics for
determining which is currently more beneficial [268]. We therefore compare to this
variant as well.

Processing Variability We evaluate a synthetic NF workload running on all 16 cores
and processing 1500 B packets. Packet processing consists of accessing two random
addresses in a 40 MiB buffer, performing a routing table lookup (similarly to the l3fwd
NF), and sending the packet out. We designate one core per each NIC as the “target
core.” We modify the load generator to send only 1 Gbps of traffic to the target core
while the rest is spread between the other cores. We also tweak the target core’s packet
processing routine to access memory a configurable number of times per packet (other
cores’ processing remains unchanged).

Figure 6.7 presents the resulting throughput. RxBisect and small privRing attain
close to line rate throughput. However, shRing’s throughput degrades by up to 60%
as the target core’s processing slows down, resulting in its traffic monopolizing the
shared ring and blocking other cores from receiving packets (which thus get dropped).
Dynamic shRing only offers the best of shRing and privRing, and thus it declines from
shRing’s near line rate speed to privRing’s throughput (never above 178 Gbps, due to
its I/O working set) when the target core’s processing exceeds 100 memory accesses
per packet. Consequently, rxBisect outperforms dynamic shRing by up to 12%.
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Figure 6.8: Traffic variability caused
by increased packet arrival rate on a sin-
gle core has no effect on rxBisect through-
put despite ring sharing. In contrast,
shRing’s approach to ring sharing de-
grades throughput.
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Traffic Variability We use the same synthetic NF as above. Only now, all cores run the
same packet processing logic, but we modify the load generator configuration to vary
the percentage of packets directed at the target core. We use 64 B packets for traffic
directed at the target core and 1500 B packets for traffic directed at all other cores, to
minimize the target core’s impact on overall throughput. For example, even if as much
as a third of all packets go to the target core, its traffic (in Gbps) will be less than 3% of
all incoming traffic.

Figure 6.8 shows the resulting throughput. RxBisect and small privRing attain near
line rate throughput. RxBisect experiences a 5% throughput degradation when the
target core’s packet rate exceeds 25%, as a result of the emulator core becoming a bot-
tleneck.1 ShRing throughput declines by up to 49% as the target core’s incoming packet
rate increases, again due to its traffic monopolizing the shared ring. PrivRing through-
put never exceeds 175 Gbps, and so dynamic shRing is outperformed by rxBisect.

Low Traffic Rate Figure 6.9 shows the per-packet processing time (in CPU cycles) for
NAT and LB when arriving traffic consists of 1 Gbps of 1500 B packets, which are spread
evenly among all cores. ShRing’s synchronization overhead results in it spending up to
34% more cycles per packet than privRing and up to 46% more than small privRing. In
contrast, rxBisect (which runs under emulation) requires≈ 10% fewer cycles to process
a packet than shRing (which runs natively). We can safely conclude that with rxBisect
hardware, rxBisect will leverage Rx buffer sharing for a small I/O working set with
faster packet processing than in shRing. Based on rxBisect’s design, which is similar
to privRing, we hypothesize that native rxBisect packet processing efficiency will be
comparable to privRing’s.

1We validate this claim by parallelizing the emulator core’s work using two cores, which implement a
pipelined version of the emulator’s processing. We do not use this version elsewhere because this pipelining
necessitates an additional queue between emulator cores, which inflates the I/O working set.
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6.4 Related Work

Leaky DMA NICs write directly to two LLC ways with DDIO. Poor I/O working set
management causes incoming packets to unnecessarily evict LLC data including other
packets being processed; this is also called the “leaky DMA” problem [97]. Several
works, complementary to ours, tackled the leaky DMA problem by partitioning the
LLC between I/O and applications to avoid interference [169] and by placing only
packets headers in the LLC [197, 271, 282].

Host-NIC Interfaces The earliest host-NIC interface similar to rxBisect is described
in the context of the Osiris ATM board [294]. This interface consisted of two rings
for receiving packets: one for the host to supply empty buffers to the NIC and an-
other for the NIC to store pointers to received packets to be processed by the host.
Unlike rxBisect, this interface did not consider sharing receive buffers or multi core
CPUs. Other host-NIC interfaces that were described in the past have either used pro-
grammed I/O rather than DMA [295] or used linked-lists rather than circular arrays
to pass descriptors [296]. The latter was shown to degrade performance due to PCIe
latency in shRing [268] and the former was shown to incur high CPU overhead in mod-
ern NICs [271]. To address PCIe bottlenecks in high-speed parallelized NIC interfaces,
streaming interfaces for NICs have recently been proposed in academia (Ensō [22]) and
by industry (NVIDIA MPRQ [21]). Our work is complementary to these interfaces.

Sharing Receive Buffers ShRing [268] is most closely related to rxBisect as it also
tackles the I/O working set size problem by sharing buffers between cores. But unlike
rxBisect, shRing suffers from performance collapse with imbalanced workloads.

DPDK recently enabled sharing Rx buffers in Ethernet when multiple Rx rings share
the same core [277], which is common when SRIOV virtual function Rx rings have
corresponding representor Rx rings in the hypervisor [113, 114]. In contrast, rxBisect
shares Rx buffers between cores.

RDMA NICs support sharing buffers between cores using Shared Receive Queues
(SRQ) [144]. SRQs were created to shrink RDMA queue memory consumption from
exceeding DRAM capacities in high performance computing clusters [285,286]. In con-
trast, rxBisect shrinks Rx buffer memory consumption to fit in LLC and even inside the
smaller DDIO’s default portion of the LLC.



Chapter 7

Conclusion

7.1 Autonomous NIC Offloads

Autonomous NIC offloading is a new way to accelerate layer-5 protocols. The approach
is appealing because it is nonintrusive, allowing system designers to keep the existing
TCP/IP stack intact. We speculate that the non-intrusiveness of the design would give
rise to additional layer-5 offloads in the future and perhaps even influence protocol
design.

7.2 The Benefits of General-Purpose On-NIC Memory

There is an important class of network applications that move data of messages exclu-
sively based on the associated metadata. For these, the act of transferring the data from
the NIC to host memory and back is superfluous and hampers performance. On-NIC
memory is now prevalent and, if exported to software, can eliminate the problem.

7.3 ShRing: Networking with Shared Receive Rings

Multicore systems with per-core Ethernet rings use too many receive rings, creating
memory pressure that hampers performance. We show that shared receive rings alle-
viates this problem despite the associated synchronization costs.

7.4 Disentangling the Dual Role of NIC Receive Rings

Today’s NIC interface needlessly overcrowds the LLC with I/O buffers to absorb worst-
case packet bursts, degrading the performance of high-throughput applications. RxBi-
sect absorbs bursts with much fewer buffers by untangling the dual role of Rx rings.
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ריצקת  
 
 
 קובקב יראווצ לש םתוחתפתהל םיאיבמ תרושקת תותשר לש םתוריהמב ריהמה לודיגהו רומ קוח לש וציק
 סמוע ררחשל ליבשב תילאדיא םימקוממ תשר יסיטרכ .ןורכזבו דבעמב תיפיצפסו ,םיתרשב םיביכרה לכב
 יריחמב תומגמ ,ףסונב .הרקמ לכב תשרה סיטרכ ךרד תמרוז תשרה תרושקת לכש ןוויכמ ןורכזהמו דבעמהמ
 .דבעמה תא גרדשל רשאמ תוילנויצקנופ םהל ףיסוהל וא תשר יסיטרכ גרדשל לוז רתויש תוארמ הרמוח
 הצרש הנכותה םע דחיב תשרה סיטרכ ןונכת י"ע ל"נה קובקבה יראווצ תא ררחשל איה תאזה הזתה תרטמ
 .הנכותב תרושקתה ילוקוטורפ שומימ לע הטילשה רומיש ידכ ךות תרשה לע
 

 תוסנכנ תשר תוליבח תודבעמש תויצקילפא לש הקלחמ תמייקש םיהזמ ונא .תשרה סיטרכ לע ןורכזב שומיש
 ןורכיזל תשרהמ הליבחה לכ תרבעהו—תוליבחה לש ןכותה יפל אלו—דבלב תוליבחב תורתוכה סיסב לע
 ,הז הרקמב .ומצע תשרה סיטרכב ףאו ,דבעמל תשרה סיטרכ ןיב רוביחב ,ןורכזב קובקב ראווצל תמרוג
-ןורכז( תשרה סיטרכ לע ןימזה ןורכזה תא ףושחל םיעיצמ ונא ןכלו ,יחרכה וניא תוליבחה לש ןכותה תרבעה
 הז ןורכז .תוסנכנ תוליבח לש ןכותה תא רומשל ליבשב לשמל ,היצקילפאה י"ע רישי שומישל ,)תשר-סיטרכ
 Remote Direct Memory Access ומכ ונלש הרקמב שומישב ןניאש תומכחותמ תוצאהל סיטרכה תא שמשמ

(RDMA). תשר תויצקנופ :תויצקילפא ינשב תשר-סיטרכ-ןורכזב תונורתיה תא םימיגדמ ונא )network 
func6ons( תופמו )key-value stores(. תוסנכנ תוליבח לש תרתוכהמ ןכותה תא םילצפמ ונא תשר תויצקנופב, 

 תאזבו ,ישארה ןורכזה לא םיריבעמ תרתוכה תאו תשר-סיטרכ-ןורכזב ןכותה תא םירמוש ונא רשפאש יתמו
 תא תרפשמ תאז השיג .ומצע סיטרכהמו ,דבעמל סיטרכה ןיב רוביחהמ ,ישארה ןורכזהמ סמוע םיררחשמ ונא
 .23% רתויה לכלב )latency( השיגה ןמז תאו 19% רתויה לכלב תשר תויצקנופ לש )throughput( הקופתה
 םיצופנ םיכרע רפסמ יפלכ הטומ תובורק םיתיעל אוה תופמל השיגה ןפואש ןוויכמ ,תופמ רובעב ,המוד ןפואב
 תאז השיג .תשר-סיטרכ-ןורכזב רתויב םיצופנה םיכרעה תא רומשל תויצקילפאל םירשפאמ ונא ,דחוימב
 .43% רתויה לכלב השיגה ןמז תאו 80% רתויה לכלב תופמ לש הקופתה תא תרפשמ
 

 לש 5-המרב תוילנויצקנופ תרבעה לש היעבב קוסעל םינופ ונא .יאמצע ןפואב סיטרכל תוילנויצקנופ תרבעה
 תוילנויצקנופה לכ לש הרבעה אלל תשר סיטרכל TCP/IP לעמ םייונבש )הנפצה לשמל ומכ( תרושקת ילוקוטורפ
 אלש תועיגמש תוליבח לע רבגתהל ךיא אוה םידדומתמ ונא ותיאש ירקיעה רגתאה .סיטרכל הטמו 4-תומר לש
 בושיחו תוקתעה :תוילניצקנופ יגוס ינשו םילוקוטורפ ינש רובע ונלש ןורתפה תא םישמממ ונחנא .רדסה יפל

CRC לוקוטוקפב NVMe-TCP, לוקוטורפב המיתחו חונעיפו הנפצהו HTTPS. הקופתה תא רפשמ ונלש ןורתפה 
 .30% רתויה לכלב הבוגתה ןמז תא רפשמו 60% רתויה לכלב דבעמה תכירצ תא דירומ ,3.3 רתויה לכל יפ
 .NVIDIA לש םישדחה תשרה סיטרכב ךמתנ אוהו סקוניל לש לנרקב ןימז רבכ ונלש שומימה
 
 תשרהמ תוליבחה תלבק תא םילבקממ ללכ ךרדב תוביל יובורמ םידבעמב .טלפ/טלקל הדובעה תצובק תיעב
 תויהל ךירצ תעבט לכ לש לדוגה .הביל לכל תוסינכ 1024 תוחפל לש לדוגב הלבקל תחא תעבט תאצקה י"ע
 םיצצוחה לכ ךסש איה היעבה .תשרהמ תוליבח לש ץרפ גופסל לכות תחא הבילש ליבשב קיפסמ לודג

 לש תושיגה הזה הרקמבו ,דבעמב ןומטמה לש ולדוגמ רתוי םילודג תויהל םילוכי הלבקה תועבט לכל םיכיישש
 ליבויש המ ןומטמב אלו ישארה ןורכזב רקיעב ולפוטי תשרהמ תועיגמש תוליבחל תשרה סיטרכו דבעמה
 ףתשל םיעיצמ ונא תאזה היעבה תא רותפל ליבשב .הינשב טיב הגיג תואמב רבודמ רשאכ םיכומנ םיעוציבל
 .תלצופמ-תעבט )2(-ו תפתושמ-תעבט )1( :םיצצוח ףותישל תושיג יתש םירקוח ונחנאו ,תובילה ןיב םיצצוח
 

 תוביל המכ ןיב תוליבח תלבקל תפתושמ תחא תעבט ןיב םיבלשמ ונא תפתושמ תעבטב .תפתושמ תעבט
 תועדוימש  תוליבח לש תפתושמה תעבטב םיסקדניא תונמסמ הב תוסינכהש תידועיי תעבט ןהמ תחא לכלש
 ןורכנס שרדנ לבא ,ןורכניס אלל תוליבח לבקל תונושה תובילל תורשפאמ תוידועייה תועבטה .הביל התואל
 םיצצוחב תוליבח םיליכמש םיצצוח םיפילחמ רשאכ לשמל ומכ ,תפתושמה תעבטה תא םינכדעמ רשאכ
 הז רשאכ קר תפתושמה תעבטה ןונגנמ תא םיליעפמ ונא ,ךכיפל .תעבטה שאר תא םימדקמשכו םישדח
 תובילה ןיב בטיה תרזופמ הרובעתה רשאכו תשרה סיטרכ י״ע ןורכזב בר שומיש שי רשאכ קר רמולכ ,םלתשמ
 27% רתויה לכלב תשר תויצקנופ לש הקופתה תא רפשל ןתינ תאז השיגבש םיארמ ונא .םיצצוח תופתשמש
 .38 רתויה לכל יפ השיגה ןמז תאו
 

 ונא .רקי ןורכנסב ךרוצה אלל תוביל ןיב םיצצוח ףותיש םירשפאמ ונא תלצופמ תעבטב .תלצופמ תעבט
 :תשר יסיטרכ לש תועבטב הכירצ-רוציי ינונגנמ ינש לש הריזשמ עבונ תפתושמ תעבטב ןורכנסה יכ םיניחבמ
 )2(-ו תוליבח רומשל ליבשב םתוא ״ךרוצש״ תשרה סיטרכל םיצצוח ״רציימ״ דבעמהשכ ,ןורכז תאצקה )1(
i תלצופמ תעבט לש השיגה .םתוא ״ךרוצש״ דבעמה ליבשב תוליבח ״רציימ״ תשרה סיטרכשכ ,תוליבח תלבק



 הטלוקפב ןוינכטהמ רירפצ ןד ׳פורפו ביבא-לת תטיסרבינואמ ןוסירומ םדא ׳פורפ לש םתייחנהב השענ רקחמה
 .םנמזו ,םתונלבס ,םתכרדה ,םתכימת לע הדות רוסא ינא ,בשחמה יעדמל
 .יתומלתשהב הבידנה תיפסכה הכימתה לע הידיבנ תרבחלו ,ןונכטל הדומ ינא
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